Что такое нейросети и как они работают

0
15

Как работает нейронная сеть: разбираемся с основами

Как работает обучение?

Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее. Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.

Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.

Из архитектуры и режима работы нейросети следует несколько особенностей, ключевых для понимания направления. Нейросети закрыты. Мы не можем сказать, по каким критериям программа «решает», что на картинке изображен человек или что текст является стихотворением. Все это происходит автоматически; задача разработчика — правильно описать структуру и задать формулы. Примерно так же мы не можем достоверно сказать, что именно происходит в человеческом мозгу, почему он понимает, что собака — это собака, даже если впервые видит незнакомую породу. Если у собаки не будет хвоста, она окажется бесшерстной или покрашенной в неестественный цвет, мы все равно определим ее как собаку — по ряду характеристик, которые до конца не осознаем сами. Нейроны в сетях независимы. Каждый нейрон никак не связан с процессом работы других. Да, они получают друг от друга информацию, но их внутренняя деятельность не зависит от других элементов. Поэтому даже если один нейрон выйдет из строя, другой продолжит работать — это важно в вопросе отказоустойчивости. Подобная устойчивость свойственна и биологическим нейронным сетям, которые продолжают работать, даже если оказываются повреждены. Но у независимости есть и недостаток: из-за нее решения оказываются многоступенчатыми и порой хаотичными, их сложно предсказать и повлиять на них. Нейросети очень гибкие. Так как нейроны сами подбирают критерии и не зависят друг от друга, нейросети более гибкие, чем другие модели машинного обучения. Их архитектура унаследовала важные свойства биологической нервной системы: способность самообучаться и приспосабливаться к новым данным, возможность игнорировать «шумы» и неважные детали входной информации. Как живой человек сможет различить знакомого в толпе, так нейросеть можно научить выделять нужное и отбрасывать ненужное. Гибкость проявляется не только в этом. Нейросети способны решать широкий спектр задач, и их можно адаптировать практически под любые обстоятельства. Нейросети приблизительны. Мы уже говорили: любой результат, выданный нейронной сетью, приблизителен и неточен. Например, сеть, которая распознает картинки, может сказать «Здесь изображена корова» только с определенной вероятностью. И эта вероятность всегда будет меньше единицы, то есть ниже ста процентов. Более того: если два раза показать нейросети одну и ту же картинку, она может выдать разные вероятности в качестве ответа. Различаться они, конечно, будут на сотые и тысячные доли, но это все же неодинаковый, недетерминированный результат. Нейросети могут ошибаться. Любой искусственный интеллект уступает человеческому. Это происходит из-за того, что мощности нашего мозга до сих пор невозможно повторить. В теле человека 86 миллиардов нейронов, и еще не создана сеть, которая хотя бы немного приблизилась к этому числу. В современных нейросетях содержится примерно 10 миллиардов нейронов. Даже при наличии продвинутых формул искусственная нейросеть все равно остается упрощенной моделью — например, в ней нет понятия силы импульса, которое есть в биологических нервах. У биологических нейронных сетей, конечно, тоже бывают ошибки. Но для нейросетей они проявляются более ярко за счет их упрощенной структуры. Читайте также: Искусственный интеллект против сценаристов: как нейросети создают истории

– по направлению распространения информации можно выделить сети прямого распространения и рекуррентные. Прямые чаще применяются для распознавания образов, кластеризации и классификации информации. Они не могут перенаправлять данные и работают в одну сторону — ввели запрос и сразу получили ответ. Рекуррентные сети «гоняют» информацию туда и обратно, пока не появится конкретный результат. За счёт эффекта кратковременного запоминания они дополняют и восстанавливают информацию. Такие сети очень востребованы в прогнозировании;

Существует три основных проблемы работы с сетями — это явления забывчивости и переобучения, а также непредсказуемость. В биологических нейронных сетях они тоже есть, но мы их корректируем. В искусственных нейросетях аналогично применяются методы корректировки, но это сложнее и не всегда может быть эффективно. Забывчивость. Представьте, что вы попали сразу в несколько незнакомых ситуаций, опыта для которых ранее не было. Скорее всего, вам будет тяжело эффективно работать. Даже простые, но отличающиеся действия будут вызывать стресс, вы будете допускать больше ошибок. В теории нейронных сетей это называется забывчивостью: программы плохо реагируют на большое разнообразие ситуаций. Если обстоятельства все время меняются, нейросеть будет пытаться подстроиться под каждое из них, и в результате точность решений упадет. Но если человек еще может сориентироваться в незнакомой обстановке, то программе это сделать сложнее, ведь она — «вещь в себе», лишенная нейропластичности. Переобучение. Это явление, когда модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к примерам оттуда, вместо того, чтобы учиться классифицировать что-то другое, не участвующее в обучении. Если вы когда-нибудь смотрели на автомобиль и видели, что фары похожи на глаза, а решетка радиатора — на рот, вы понимаете, как это работает. Нейросеть точно так же начинает путаться. Но ресурсов человеческого мозга хватает, чтобы понять, что машина — не настоящее лицо. Программа понять это не может и в подобной ситуации способна действительно выдать результат, что на картинке изображен человек. Еще один пример переобучения можно привести для сетей, которые создают что-то новое, например стиль. Вы, наверное, замечали, что у реальных художников и писателей есть свои характерные приемы, а их произведения со временем становятся все более похожими друг на друга. Это тоже пример переобучения — и генерирующие контент нейросети также ему подвержены. Непредсказуемость. Это прямое следствие закрытости и автономности нейронов. Сложно предугадать результат работы нейросети, будет ли она корректно работать в решении той или иной задачи. И если с предыдущими ошибками можно бороться благодаря правильным алгоритмам обучения, то непредсказуемость не пропадает. Это не стандартная программа, которая выдает известный результат для каждой ситуации. С непредсказуемостью тоже борются: точность можно повысить, если использовать подходящую архитектуру. Не обязательно более сложную — с некоторыми задачами хорошо справляются, наоборот, более простые сети. Но это дополнительно усложняет работу над нейросетями, особенно когда результат работы критичен.

ЧИТАТЬ ТАКЖЕ:  Как создать картинку с помощью нейросети

Нейросети перерабатывают терабайты данных и со временем выполняют поставленные задачи всё лучше. Раз за разом предлагая анализировать, генерировать и прогнозировать информацию по запросу, пользователь может обучить сеть выдавать нужный результат с наименьшими затратами времени.

Какими бывают нейросети

Разберём работу нейросетей на примере популярной Kandinsky 3.0 от Сбера. Для обучения и генерации конечного результата эта сеть перерабатывает огромное количество текстовых данных и изображений. Это позволяет ей создавать красивые картинки на основе заданных параметров. Вот в чём состоит принцип действия:

Искусственный интеллект — понятие более широкое. Оно включает в себя не только нейронные сети, но и другие методы обработки информации, в том числе экспертные и логические программы. Нейронные сети — один из видов искусственного интеллекта. Их отличительная особенность — обучение и адаптация в основе алгоритмов.

Нейросеть не осознает свои действия. Даже если она генерирует контент — она делает это машинально, на основе предыдущих данных, а не благодаря собственному мышлению. Вряд ли нейронная сеть, даже сложная, сможет догадаться, что созданное ей предложение абсурдно и не имеет смысла. Для нее нет такого понятия, как «смысл». Творчество нейросетей — примерно как «речь» говорящего попугая или «китайская комната». Поэтому есть мнение, что книга или картина, написанные нейросетью, не смогут заменить человеческие, даже если алгоритмы будут очень хорошо имитировать наше творчество. Вряд ли много кто захочет читать книгу, если точно известно, что автор не вкладывал туда никаких мыслей. Правда, пока создавать с нуля контент, похожий на настоящий, могут немногие системы. Но вы можете внести свой вклад в их развитие — если освоите, как они работают. Сейчас это направление востребовано как никогда. Тест: нейросеть или человек — сможете определить?

В 2024 году тот, кто приручил нейросеть — уже как минимум на шаг опередил конкурентов. Ведь нейронные сети существенно упрощают работу и ускоряют бизнес-процессы. Что же такое нейросети, какую пользу они могут принести бизнесу, в чём отличие нейросети от искусственного интеллекта — это и многое другое вы найдёте в нашей статье. В конце материала вас ждёт список нейросетей, которые упростят работу на маркетплейсах.

Чтобы бизнесу обрести помощника в виде нейросети, нужно разобраться, что это. Предположим, что человеческий мозг — это компьютер. Он содержит огромное количество «проводов» и «переключателей», которые соединяют различные части и помогают думать и запоминать. Эти «провода» и «переключатели» — нейроны. Во время мыслительного процесса и запоминания эти нейроны соединяются по-новому, за счёт чего происходит запоминание и обучение.

Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.

Сейчас на слуху «творчество нейросетей»: сгенерированные машиной тексты и стихи, несуществующие картины и фотографии людей, почти похожие на настоящие. Для человека вне IT это выглядит как чудо. Но на самом деле нейронные сети хорошо объясняются математически, хотя результат их работы действительно невозможно предсказать.

Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь