Содержание статьи
Нейросети в медицине: что это и как работает
Ограничения и проблемы в использовании
К концу XX века алгоритмов стало больше, вычислительные машины научились делать более мощными и компактными, а кроме того, появились наборы данных для обучения. Желания ученых наконец стали осуществимы. Вскоре им удалось добиться успеха в распознавании речи, а затем и в области компьютерного зрения (подробнее об этом читайте в нашем материале «Смотри внимательно») — в 2012 году была опубликована знаковая статья, посвященная нейросети ImageNet и глубокому обучению.
За последние 70 лет нейросети прошли путь от теории к практическому применению и сейчас используются там, где раньше никто даже не задумывался о цифровизации, — например, в сибирских заповедниках для контроля популяции животных, создания картин и даже написания книг. Исследователи, в свою очередь, имеют дело с более сложными задачами, такими как обработка естественных языков и видео. И чем закончится эта веха популярности нейросетей, мы можем только гадать.
Ещё одно препятствие касается процесса внедрения уже готового продукта в рабочие процессы медицинских учреждений: это отсутствие в законодательстве конкретных стандартов, регламентирующих применение таких технологий в медицине. Но работа в этом направлении ведётся — уже разработана первая редакция проекта национального стандарта ГОСТ Р для искусственного интеллекта в здравоохранении. После утверждения он будет регулировать клинические испытания медицинских ИИ-систем в России.
В 2024 году тот, кто приручил нейросеть — уже как минимум на шаг опередил конкурентов. Ведь нейронные сети существенно упрощают работу и ускоряют бизнес-процессы. Что же такое нейросети, какую пользу они могут принести бизнесу, в чём отличие нейросети от искусственного интеллекта — это и многое другое вы найдёте в нашей статье. В конце материала вас ждёт список нейросетей, которые упростят работу на маркетплейсах.
Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.
Нейронная сеть — это последовательность нейронов, которые обрабатывают данные и обмениваются ими друг с другом. Связь между нейронами осуществляется благодаря синапсам, усиливающим или ослабляющим сигнал. В зависимости от параметров синапсов и характеристик нейронов на выходе можно получить результаты, схожие с тем, что может выдать человеческий мозг. Условно говоря, если человек может распознать, что на картинке изображен кот, то и правильно обученная нейросеть должна делать так же, с высоким уровнем точности.
Нейросети нужен человек
Рекуррентные нейронные сети. Связь между узлами в таких нейросетях образует направленные последовательности. При этом каждый следующий этап работы может использовать результат предыдущего в качестве входных данных. Проще говоря, у этих нейросетей есть внутренняя память, поэтому они могут работать с наборами данных разной длины, делить на части, сохранять и обращаться к уже обработанным блокам. Именно рекуррентные сети используются для обработки языков, распознавания и синтеза речи, машинного перевода.
Даже при всем желании рассказать про все существующие виды нейросетей невозможно. Может быть, пока вы читаете этот материал, где-то уже придумали еще один алгоритм. Однако существует три наиболее чаще встречающихся разновидности нейросетей, на которых есть смысл остановиться подробно.
– конкуренция с людьми за рабочие места. В тех случаях, когда квалификация специалиста не особенно важна, сети могут заменить человека. Под удар попадают копирайтеры, иллюстраторы, дизайнеры, программисты. Это не значит, что у людей есть повод для паники, скорее это причина для профессионального роста и развития. Но повод, чтобы задуматься, серьёзный;
В середине XX века двое ученых, Уоррен Маккаллок и Уолтер Питтс, предположили, что нейроны в мозгу человека, если говорить просто, оперируют двоичными числами, как и компьютеры. Они создали конструкцию электронных аналогов нейронов и предсказали, что такая сеть сможет повторять работу мозга: обучаться, распознавать текст и изображения и многое другое. Их исследование, опубликованное в 1943 году, легло в основу работы «Логическое исчисление идей, относящихся к нервной активности». Ее можно считать точкой отсчета существования нейросетей — математических моделей, построенных по принципу организации и функционирования биологических нейронных сетей — нервных клеток живого организма.
Чтобы бизнесу обрести помощника в виде нейросети, нужно разобраться, что это. Предположим, что человеческий мозг — это компьютер. Он содержит огромное количество «проводов» и «переключателей», которые соединяют различные части и помогают думать и запоминать. Эти «провода» и «переключатели» — нейроны. Во время мыслительного процесса и запоминания эти нейроны соединяются по-новому, за счёт чего происходит запоминание и обучение.
Нейросети можно категоризировать по-разному — например, на однослойные и многослойные, на нейросети прямого распространения и рекуррентные, на радиально-базисные, а также по типу обучения: с учителем или без, аналоговые, двоичные или образные, с фиксированными или динамическими связями. Ультимативной классификации не существует. Инфографика, созданная в 2016 году, демонстрирует почему.
Полученное значение подставляется в функцию активации, а она уже будет представлять собой выходную информацию, которая отправится дальше по слоям нейронной сети, пока не дойдет до выхода. Первая эпоха никогда не заканчивается успехом, для достижения достаточных метрик требуется их большее количество, которое зависит как от вида задачи, так и от данных и их качества
Однако без помощи человека нейросеть не справится ни с одной задачей. Алгоритм необходимо верно подобрать под конкретную ситуацию, обучить его, выявить ошибки, а затем доработать. Не существует и нейросетей, которые могут одновременно хорошо выполнять различные категории задач и самостоятельно определять, что нужно делать.
Какими бывают нейросети
На сегодняшний день основные сферы применения нейросетей — это прогнозирование, принятие решений, распознавание образов, оптимизация и анализ данных. Машинное обучение лежит в основе большинства систем распознавания и синтеза речи, а также распознавания и обработки изображений. Сфера применения уже не имеет значения: автоматически регулировать экспозицию в приложении камеры на смартфоне или искать браконьеров на фотографиях в Саяно-Шушенском заповеднике — алгоритму по большому счету все равно.
Сверточные нейросети. Архитектура сверточных нейронных сетей похожа на нейросети прямого распространения, но они обладают бо́льшим количеством слоев. Это позволяет учитывать свойства входных данных и реализовывать прямое распространение эффективнее, что подходит для обработки изображений. Структура тоже однонаправленная (данные проходят от входного слоя к выходу), и обратных связей тут нет. Сверточные нейросети напоминают зрительную кору, у которой есть простые клетки, реагирующие на попадание света под разным углом, и сложные клетки, реакция которых связана с активацией простых. Они входят в набор глубокого обучения (deep learning) и позволяют распознавать объекты, прогнозировать, классифицировать изображения, находить аномалии и выполнять другие подобные задачи.
Для генерации изображений можно воспользоваться, например, нейросетью Kandinsky, обученной специалистами Сбера, или нашумевшей Midjourney. Опробовать Kandinsky можно в приложении «Салют», команда «Позови художника». Если раньше для работы с нейросетями необходимо было скачивать или разворачивать их на сервере, то сейчас появились и более простые решения для удобства пользователей.
Нейронная сеть — это программа для анализа данных, чаще всего разработанная для оптимизации того или иного рутинного процесса. Многие ассоциируют термины «искусственный интеллект» и «нейронная сеть» с работой человеческого мозга. Однако нейронная сеть — это в первую очередь софт, несмотря на некоторую схожесть процессов «обучения» нейронной сети и обучения человека.
Искусственный интеллект — понятие более широкое. Оно включает в себя не только нейронные сети, но и другие методы обработки информации, в том числе экспертные и логические программы. Нейронные сети — один из видов искусственного интеллекта. Их отличительная особенность — обучение и адаптация в основе алгоритмов.
Нейросети прямого распространения. Узлы таких нейросетей не связаны друг с другом в пределах одного слоя, а информация передается от одного слоя к другому. Это один из базовых типов нейросети, по сути логичное развитие идеи перцептрона. Он не может обеспечить высокой производительности, но хорошо работает в связке с другими нейросетями. Например, если дать такой нейросети кусочек задачи по обработке нескольких пикселей изображения, она сделает это быстро, но результаты все равно нужно будет обработать.
Технологии машинного обучения всё активнее проникают в повседневную жизнь, и мы даже не задумываемся о том, что нашу ленту в Instagram и других социальных сетях сформировал именно искусственный интеллект. Конечно, у него есть и более серьезные задачи — например, прогноз спроса на товары, распознавание лиц, отпечатков или голоса. Однако сложно представить более важную и перспективную сферу применения ИИ чем медицина. От нейросетей ждут серьезных достижений в этой области — это и диагностика различных заболеваний, и разработка новых лекарств, и новые методы лечения. Насколько эти ожидания оправданы? О том, как работают нейронные сети в медицине, и о конкретных системах помощи в принятии врачебных решений – рассказываем в этой статье.
Первое препятствие связано не столько с применением медицинской нейросети, сколько с её разработкой. Для обучения искусственного интеллекта необходимо большое количество данных. В случае с анализом медицинских изображений требуются снимки с выполненной на них разметкой на объекты.