Содержание статьи
Что такое нейросеть и как она работает
Как обучают нейросети
При глубоком обучении специалист по работе с данными предоставляет нейросети только необработанные данные, а та самостоятельно извлекает функции и обучается независимо. Если результат неудовлетворительный, то цикл обучения повторяется снова, пока нейросеть не будет давать корректные ответы.
Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.
Однако возрождение интереса к нейронным сетям и революция в глубоком обучении произошли лишь в последние годы благодаря индустрии компьютерных игр. Современные игры требуют сложных вычислений для обработки большого числа операций. В итоге производители начали выпускать графические процессоры (GPU), которые объединяют тысячи относительно простых вычислительных ядер на одном чипе. Исследователи вскоре поняли, что архитектура графического процессора очень похожа на архитектуру нейросети.
Само обучение бывает контролируемым и глубоким. В первом случае специалисты по работе с данными загружают для обучения нейросети помеченные наборы данных, которые заранее содержат правильный ответ. В процессе обучения нейросеть накапливает знания, а затем получает новые данные, чтобы построить уже свои предположения.
Идею нейронных сетей впервые предложили исследователи из Чикагского университета Уоррен Маккалоу и Уолтер Питтс в 1944 году. Первую обучаемую нейросеть в 1957 году продемонстрировал психолог Корнеллского университета Фрэнк Розенблатт. Она была примитивной (одноуровневой).
Разработчик нейронных сетей — это специалист, который создает архитектуру, а также решает теоретические и прикладные задачи систем искусственного интеллекта. Он, в частности, проектирует методики машинного обучения и ведет аналитическую работу в области специализированного программного обеспечения.
Аналитики International Data Corporation подсчитали, что мировой рынок решений в сфере искусственного интеллекта будет расти в среднем на 18,6% ежегодно в период с 2022 по 2026 год. По мнению авторов исследования McKinsey, именно прикладной искусственный интеллект и внедрение машинного обучения стали двумя наиболее значимыми технологическими тенденциями на рынке ИИ. В 2022 году компании, занимающиеся генеративным искусственным интеллектом, привлекли $1,37 млрд — это почти столько же, сколько за предыдущие пять лет.
В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.
Автоматическая генерация контента
Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.
При обучении нейронной сети все ее «веса» изначально задаются случайными значениями. Обучающие данные подаются на нижний, или входной, слой. Затем они проходят через последующие слои, пока не достигают выходного. Во время обучения «веса» и пороговые значения постоянно корректируются до тех пор, пока данные обучения не будут постоянно давать одинаковые результаты.
В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.
Специалист по нейросетям должен быть знаком с передовыми методами разработки программного обеспечения, особенно с теми, которые касаются проектирования системы, контроля версий, тестирования и анализа требований. Также ему потребуются знания в области Data Science, такие как моделирование данных, оценка алгоритмов и моделей прогнозирования. Наконец, для презентации работы нейросети потребуется пользоваться технологиями пользовательского интерфейса, использовать диаграммы или визуализации.
Обучение не так просто, как кажется. В нейронных сетях есть эффект переобучения: если тренировочных сетов слишком много и они слишком разные, нейросеть «теряется» и перестает эффективно выделять признаки. В результате она может, например, воспринять артефакт графики как чье-то лицо или перепутать мужчину с женщиной. Это происходит из-за размытия весов. И это не единственная ошибка, просто самая известная.
Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.