Содержание статьи
Что такое нейросеть и как она работает. Объясняем простыми словами
Как работает нейросеть?
В 2024 году тот, кто приручил нейросеть — уже как минимум на шаг опередил конкурентов. Ведь нейронные сети существенно упрощают работу и ускоряют бизнес-процессы. Что же такое нейросети, какую пользу они могут принести бизнесу, в чём отличие нейросети от искусственного интеллекта — это и многое другое вы найдёте в нашей статье. В конце материала вас ждёт список нейросетей, которые упростят работу на маркетплейсах.
Нейросеть (англ. neural network) — математическая модель нейронной сети, которая имитирует работу человеческого мозга. Нейросети состоят из множества взаимосвязанных искусственных нейронов, способных обрабатывать большие массивы данных и находить в них сложные закономерности. Возможности нейросетей позволяют ИИ-помощникам понимать речь, генерировать связный текст, распознавать и создавать изображения.
Искусственный интеллект — понятие более широкое. Оно включает в себя не только нейронные сети, но и другие методы обработки информации, в том числе экспертные и логические программы. Нейронные сети — один из видов искусственного интеллекта. Их отличительная особенность — обучение и адаптация в основе алгоритмов.
Однако первые успехи нейросетей привели к завышенным ожиданиям, которые они не смогли оправдать. В конце 1960-х правительство США, где проводились основные исследования нейросетей, резко урезало финансирование подобных разработок, посчитав их не оправдывающими себя.
Как и люди, нейросети могут правильно решать новые задачи, опираясь на предшествующий опыт. Эти умные программы анализируют новую информацию, обобщают её и применяют выученные шаблоны к новым задачам. Если дать нейросети примеры «правильной» работы для решения задачи, то она может совершенствовать свою работу дальше.
Настроения в обществе тоже были далеки от оптимизма. Людей пугала мысль, какую власть могут получить «думающие машины», способные программировать сами себя. Писатели-фантасты (Айзек Азимов, Гарри Гаррисон) в своих произведениях размышляли, какое влияние нейросети окажут на общество, и не всегда их прогнозы были радужны. Но программисты продолжали мечтать о компьютере, который мог бы сам исправлять ошибки разработчиков.
В 1943 году американские учёные — нейрофизиолог Уоррен Маккалок и нейролингвист Уолтер Питтс написали статью о том, как могут работать нейроны. Они первыми предложили термин «искусственный нейрон» и смоделировали рабочую искусственную нейронную сеть на основе электрических схем.
По-настоящему нейросети рванули вперёд с 2000-х годов, когда появилась подходящая для них техническая база. Это позволило к 2006 году разработать концепцию глубокого обучения нейросетей — вида машинного обучения на огромных массивах данных, после которого многоуровневые нейросети могли решать задачи без участия человека. Теперь нейронные сети куда эффективнее решают прикладные задачи.
Что такое нейросеть, почему нейросеть и ИИ не одно и то же
Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.
Чтобы бизнесу обрести помощника в виде нейросети, нужно разобраться, что это. Предположим, что человеческий мозг — это компьютер. Он содержит огромное количество «проводов» и «переключателей», которые соединяют различные части и помогают думать и запоминать. Эти «провода» и «переключатели» — нейроны. Во время мыслительного процесса и запоминания эти нейроны соединяются по-новому, за счёт чего происходит запоминание и обучение.
В 1958 году американский психолог Корнеллского университета Фрэнк Розенблатт повторил математическую модель нейросети с помощью компьютерного кода. Его нейрокомпьютер «Марк-1» был построен на идее персептрона — математической модели биологического нейрона. Нейросеть имела один слой (данные от входа сразу шли на вывод), но её уже можно было обучить. Она могла сама относить объекты по категориям. Например, распознавать печатные буквы на карточках.
Разберём работу нейросетей на примере популярной Kandinsky 3.0 от Сбера. Для обучения и генерации конечного результата эта сеть перерабатывает огромное количество текстовых данных и изображений. Это позволяет ей создавать красивые картинки на основе заданных параметров. Вот в чём состоит принцип действия:
Самый популярный алгоритм обучения нейросети — метод обратного распространения ошибки. В начале обучения разработчик подаёт на вход тренировочные примеры и правильные ответы. Нейросеть классифицирует данные, затем сравнивает свой результат с ожидаемым и вычисляет, где была ошибка.
– по направлению распространения информации можно выделить сети прямого распространения и рекуррентные. Прямые чаще применяются для распознавания образов, кластеризации и классификации информации. Они не могут перенаправлять данные и работают в одну сторону — ввели запрос и сразу получили ответ. Рекуррентные сети «гоняют» информацию туда и обратно, пока не появится конкретный результат. За счёт эффекта кратковременного запоминания они дополняют и восстанавливают информацию. Такие сети очень востребованы в прогнозировании;