Содержание статьи
Что такое нейросеть и как она работает
Виды нейронных сетей
Например, чтобы научить нейронку внутри Midjourney сопоставлять текст с картинками, ей «скормили» огромный массив изображений с подписями. С одного конца нейросеть получала текст, а с другого — картинку. А потом училась определять, что на фото: человек, водолазка или садовый шланг.
«Но человеческий разум, в отличие от ChatGPT и ему подобных, не неуклюжий статистический механизм для сопоставления с паттерном, поглощающий сотни терабайт данных и экстраполирующий наиболее характерные разговорные реакции или наиболее возможные ответы на научный вопрос. Напротив, человеческий разум — удивительно эффективная и даже элегантная система, которая оперирует небольшими объёмами информации; она стремится не к выведению грубых корреляций в данных, но к созданию объяснений».
Рекуррентные. Нейросети, заточенные на работу с последовательностями — текстом, речью, аудио или видео. Идея в том, что они помнят всю цепочку данных, могут понимать её смысл и предсказывать, что будет дальше. Например, эту модель используют Google Translate и «Алиса», чтобы генерировать связный текст.
– конкуренция с людьми за рабочие места. В тех случаях, когда квалификация специалиста не особенно важна, сети могут заменить человека. Под удар попадают копирайтеры, иллюстраторы, дизайнеры, программисты. Это не значит, что у людей есть повод для паники, скорее это причина для профессионального роста и развития. Но повод, чтобы задуматься, серьёзный;
Свёрточные. Берут на себя всю работу с картинками: распознавание, генерацию, обработку, удаление фона — всё что угодно. За это в них отвечают два алгоритма: свёртка и пулинг. Первый делает послойную нарезку картинки, а второй — находит и кодирует на этих слоях самые важные признаки.
Были и казусы: чат-бот врал, ошибался и иногда противоречил сам себе. Плюс без хорошего запроса писал он откровенно слабо — водянисто, абстрактно и совсем неинтересно. Так что использовать его тексты в качестве полноценной журналистской работы пока, мягко скажем, рановато.
Как работает нейросеть?
ИИ может быстро съесть всю человеческую культуру — всё, что мы создали за тысячи лет, — переварить её и начать извергать поток новых культурных артефактов. Не только школьные сочинения, но и политические речи, идеологические манифесты и даже священные книги для новых культов. К 2028 году в президентской гонке в США могут больше не участвовать люди.
Вы наверняка спросите: а откуда вообще нейросеть знает, что такое енот, скейтборд, а тем более фильм «Назад в будущее»? Ответ прост: её этому обучили на большом массиве данных, который называется датасетом. Принцип тот же, что и с детьми в яслях: «Смотри, Ванюша, это яблоко. А это морковь. А это, Ванюша, летающий скейтборд в стиле ретрофутуризма» 🙂
Что значит для людей жить в мире, где большой процент историй, мелодий, образов, законов, политики и инструментов формируется нечеловеческим разумом, который знает, как со сверхчеловеческой эффективностью использовать слабости, предубеждения и пристрастия людей? Знает, как устанавливать с людьми близкие отношения? В таких играх, как шахматы, ни один человек не может надеяться победить компьютер. Что будет, когда то же самое произойдёт в искусстве, политике и религии?
Перцептроны. Первая модель, которую удалось запустить на вычислительной машине — нейрокомпьютере «Марк I». Её разработал ещё в 1958 году учёный Фрэнк Розенблатт — он заложил некоторые принципы, которые потом переняли более сложные модели. Так, несмотря на однослойную структуру, перцептрон уже умел настраивать веса и примитивно корректировать ошибку.
Но есть и интересный момент: после многочасовой беседы с ChatGPT возвращаться в обычный Google было нелегко — как будто пересаживаешься с «Сапсана» на пригородную электричку. То есть, возможно, нас вскоре ждёт полное изменение самой сути потребления информации в Сети. И вот это уже интересно.
Во время написания этого текста мы решили пообщаться с нейронкой, встроенной в Microsoft Bing, — по сути, ChatGPT с функциями поисковика. Она была чем-то вроде технического консультанта для статьи: отвечала на вопросы, придумывала простые и интересные аналогии для сложных понятий, вела беседы в рамках этих аналогий, подбирала интересные примеры.
Нейросеть — это программа, которая умеет обучаться на основе данных и примеров. То есть она не работает по готовым правилам и алгоритмам, а пишет их сама во время обучения. Если показать ей миллион фотографий котов, она научится узнавать их в любых условиях, позах и костюмах.
– по направлению распространения информации можно выделить сети прямого распространения и рекуррентные. Прямые чаще применяются для распознавания образов, кластеризации и классификации информации. Они не могут перенаправлять данные и работают в одну сторону — ввели запрос и сразу получили ответ. Рекуррентные сети «гоняют» информацию туда и обратно, пока не появится конкретный результат. За счёт эффекта кратковременного запоминания они дополняют и восстанавливают информацию. Такие сети очень востребованы в прогнозировании;