Что необходимо для обучения нейросети

0
14

Алгоритмы обучения нейронных сетей

Машинное обучение и глубокое обучение

С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.

Машинное зрение — это способность компьютеров извлекать информацию и смысл из изображений и видео. С помощью нейронных сетей компьютеры могут различать и распознавать изображения так, как это делают люди. Машинное зрение применяется в нескольких областях, например:

В эпоху информационных технологий и научных открытий для решения сложных задач все чаще применяется искусственный интеллект. Среди множества его инструментов и методов особое место занимают нейронные сети — интеллектуальные роботы, имитирующие работу человеческого мозга. Однако для того чтобы нейросети смогли решать сложные задачи, их сначала необходимо обучить.

Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:

Нейронные сети — это подмножество машинного обучения, которое использует архитектуру, вдохновленную биологическими нейросетями. Это означает, что они состоят из слоев «нейронов», которые передают и преобразуют информацию. Они хорошо подходят для обработки сложных данных (изображения, звук).

При погружении в мир нейронных систем мы обнаруживаем, что существует множество архитектур, отражающих их разнообразие и способности. Выделяются два ключевых типа: простые и глубокие нейросети. Оба вида имеют свои преимущества и ограничения. Чтобы получить хороший результат, важно научиться находить баланс между ними.

Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.

Есть множество методов «тренировки» нейронных сетей, но все они основываются на двух ключевых принципах: с помощью учителя и без него. Это происходит точно так же, как и у человека: можно приобретать новые знания под руководством наставника, который подскажет и скорректирует отдельные моменты, а можно заниматься самообразованием. В последнем случае человек опирается только на свой личный опыт и наблюдения.

ЧИТАТЬ ТАКЖЕ:  Как используют искусственный интеллект сегодня

Как работают нейронные сети?

Выходной слой дает окончательный результат обработки всех данных искусственной нейронной сетью. Он может иметь один или несколько узлов. Например, при решении задачи двоичной классификации (да/нет) выходной слой будет иметь один выходной узел, который даст результат «1» или «0». Однако в случае множественной классификации выходной слой может состоять из более чем одного выходного узла.

Машинное обучение и нейронные сети связаны между собой, однако это все же разные области искусственного интеллекта. В первом случае речь идет о широком термине, который означает использование алгоритмов для анализа данных, обучения на их основе и прогнозирования или принятия решений. Здесь могут использоваться разные способы: статистические методы, деревья решений и т. д.

Нейронная сеть медленно накапливает знания из этих наборов данных, которые заранее дают правильный ответ. После обучения сеть начинает делать предположения об этническом происхождении или эмоциях нового изображения человеческого лица, которое она никогда раньше не обрабатывала.

Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.

Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.

Нейронные сети помогают компьютерам принимать разумные решения с ограниченным участием человека. Они могут изучать и моделировать отношения между нелинейными и сложными входными и выходными данными. Например, нейронные сети могут выполнять следующие задачи.

Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.

Нейронные сети прямого распространения обрабатывают данные в одном направлении, от входного узла к выходному узлу. Каждый узел одного слоя связан с каждым узлом следующего слоя. Нейронные сети прямого распространения используют процесс обратной связи для улучшения прогнозов с течением времени.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь