Содержание статьи
Глубокое обучение и машинное обучение в Машинном обучении Azure
Основные выводы
Нет, не является. Это широко распространенное недоразумение, поскольку основное отличие между ИИ и нейронными сетями заключается в том, что ИИ или искусственный интеллект — это целая область компьютерных наук, которая изучает и создает интеллектуальные машины, обладающие своим интеллектом. В то время как нейронная сеть относится к системе искусственных узлов, которые составляют нейронные сети, отчасти вдохновленные мозгом животных.
Технология адаптируется сама и не требует вмешательства человека. Не надо нажимать на кнопки, набирать текст, искать информацию — только сообщить, что нужно. Например, узнать прогноз погоды или подготовить дом ко сну — выключить кондиционер, закрыть двери, погасить свет.
Наша первоначальная аналогия по-прежнему актуальна: не следует рассматривать эти концепции как отдельные элементы, а скорее как матрешку, где ИИ является большой куклой, а машинное обучение, нейронные сети и глубокое обучение — это последующие меньшие куклы.
Структура нейронных сетей такова, что первый набор слоев обычно содержит признаки более низкого уровня, а последний — признаки более высокого уровня, которые нас интересуют. Используя последние слои применительно к новой задаче или области рассмотрения, можно значительно сократить количество времени, данных и вычислительных ресурсов, необходимых для обучения новой модели. Например, у вас имеется модель, которая распознает легковые автомобили, можно переориентировать эту модель путем переноса обучения, чтобы начать распознавать грузовики, мотоциклы и другие виды транспортных средств.
Машинное обучение — это подполе искусственного интеллекта. Глубокое обучение — это подполе машинного обучения, а нейронные сети составляют основу алгоритмов глубокого обучения. Количество слоев узлов, или глубина, нейронных сетей отличает одну нейронную сеть от алгоритма глубокого обучения, который должен иметь более трех слоев.
Мы все знакомы с термином «искусственный интеллект» (ИИ). О нём снято много фильмов — «Терминатор», «Матрица», «Из машины». Но вы, наверное, слышали и о других терминах — машинное обучение (Machine Learning) и глубокое обучение (Deep Learning). Их иногда используют как синонимы искусственного интеллекта, и в результате не видно разницы между искусственным интеллектом, машинным обучением и глубоким обучением.
Во-первых, традиционные алгоритмы машинного обучения имеют относительно простую структуру, включая линейную регрессию или модель решающего дерева. В то время как модели глубокого обучения основаны на искусственной нейронной сети. Эти нейронные сети имеют много слоев и (как и человеческий мозг) сложны и переплетены через узлы (аналог нейронов человека).
Следовательно, лучше рассматривать то, что делает глубокое обучение уникальным в рамках машинного обучения, вместо противопоставления глубокого обучения и машинного обучения. В широком смысле, особенности, которые делают глубокое обучение уникальным, включают структуру алгоритма нейронной сети, меньшую необходимость в человеческом вмешательстве и более обширные требования к данным. Давайте рассмотрим их по отдельности:
Обнаружение объектов
Машинное обучение — это общий термин, обозначающий, когда компьютеры учатся на данных. Это перекресток компьютерных наук и статистики, где используются алгоритмы для выполнения конкретной задачи без явного программирования; вместо этого они распознают паттерны в данных и делают прогнозы, когда появляются новые данные.
ИИ и его многочисленные подполе остаются актуальными, и чем быстрее мы адаптируемся к этим изменениям, тем быстрее сможем в полной мере использовать их возможности и применить их в мире ИТ и решений для обслуживания и прогнозной аналитики. Так что, пожалуйста, больше никаких страшилок. Специалисты по данным уже выяснили, что сценарии с Скайнетом, Терминаторами и апокалипсисом Матрицы не произойдут в ближайшее время!
Преобразователи — это архитектура модели, которая подходит для решения проблем, содержащих такие последовательности, как текст или данные временных рядов. Они состоят из слоев кодировщика и декодера. Кодировщик принимает входные данные и сопоставляет их с числовым представлением, содержащим определенные сведения, например контекст. Декодер использует информацию из кодировщика для получения выходных данных, например переведенного текста. Преобразователи отличаются от других архитектур, содержащих кодировщики и декодеры, своими вложенными слоями внимания. Внимание: метод концентрации на конкретных частях входных данных на основе важности их контекста относительно других входных данных в последовательности. Например, при суммировании новостных статей не все предложения важны для описания основной идеи. Если сосредоточиться на ключевых словах в статье, формирование сводных данных может быть сделано в одном предложении — в заголовке.
Компании используют глубокое обучение для анализа текста, чтобы обнаруживать торговлю инсайдерской информацией и обеспечивать соответствие требованиям законодательства. Еще один распространенный пример — мошенничество в области страхования: машинный анализ текста часто используется для анализа больших объемов документов, чтобы распознать случаи возможного мошенничества, выдаваемые за страховой случай.
Во-вторых, модели глубокого обучения требуют гораздо меньше человеческого вмешательства, чем их обычные аналоги в машинном обучении. Например, ИИ для автономного автомобиля будет иметь возможность распознавать дорожные знаки без ручного вмешательства инженера-программиста, также известного как извлечение признаков.
В 1959 году Артур Сэмюэл придумал термин «машинное обучение» — способность компьютера учиться без участия человека. То есть искусственный интеллект возможен без машинного обучения, но для этого понадобится миллион строк кода со сложными правилами и условиями.
Американский информатик Джон Маккарти, впервые употребив термин «искусственный интеллект» в 1956 году, понимал под этим компьютеры, способные выполнять характерные для человеческого интеллекта задачи: планирование, понимание языка, распознавание объектов и звуков, умение обучаться и решать задачи.
Как и при распознавании изображений, при создании заголовков изображений система должна создать заголовок, описывающий содержание конкретного изображения. Если у вас имеется технология, позволяющая обнаруживать и помечать объекты на фотографиях, следующим шагом станет преобразование этих меток в описательные предложения.
Следующие шаги
ИНС состоит из искусственных нейронов, которые взаимодействуют между собой. Они расположены слоями — каждый слой реагирует на определённые признаки, например, изгибы и границы фигур при распознавании изображения. Именно из-за множества слоёв обучение называется глубоким.
Сверточная нейронная сеть — это особо эффективная искусственная нейронная сеть, имеющая уникальную архитектуру. Слои в ней организованы в трех измерениях: ширина, высота и глубина. Нейроны в одном слое соединяются не со всеми нейронами в следующем слое, а только с небольшой областью нейронов этого слоя. Окончательный результат сокращается до одного вектора оценки вероятности, упорядоченного по глубине в одном из измерений.
Наконец, глубокое обучение требует значительно больше данных, чем стандартные алгоритмы машинного обучения. Машинное обучение часто работает с тысячами точек данных, тогда как глубокое обучение может работать с миллионами. Из-за своей сложной многослойной структуры системы глубокого обучения нуждаются в большом наборе данных, чтобы уменьшить или устранить колебания и делать качественные интерпретации.
Обучение моделей глубокого обучения часто требует большого количества обучающих данных, наличия ресурсов для высокопроизводительных вычислений (GPU, TPU) и временных затрат. В случаях, когда доступ к таким ресурсам отсутствует, можно попытаться упростить процесс обучения с помощью методики, известной как перенос обучения.
Глубокое обучение зачастую применяется для обнаружения объектов. Обнаружение объектов используется для идентификации объектов на изображении (например, автомобилей или людей) и предоставления определенного расположения для каждого объекта с ограничивающим полем.
Другими словами, вместо прописывания подробных инструкций для каждой конкретной задачи используется алгоритм, который учится находить решения самостоятельно. Обрабатывая огромное количество данных в процессе машинного обучения, компьютер приспосабливается к условиям задачи и совершенствуется.
Как уже упоминалось, ИИ относится к машинам, которые могут имитировать когнитивные навыки человека. Нейронные сети, с другой стороны, представляют собой сеть искусственных нейронов или узлов. Они отдаленно вдохновлены биологическими нейронными сетями, которые составляют человеческий мозг.
Нейронная сеть с передачей по очереди — это наиболее простой тип искусственной нейронной сети. В сети с передачей по очереди информация перемещается только в одном направлении от входного уровня к выходному. Нейронные сети с передачей по очереди преобразуют входные данные, пропуская их через несколько скрытых слоев. Каждый слой состоит из набора нейронов и полностью соединен со всеми нейронами в предыдущем слое. Последний полностью соединенный слой (выходной слой) представляет собой вывод созданных прогнозов.