Содержание статьи
Как разработать искусственный интеллект: пошаговое руководство
«Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»
Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность — «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.
Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.
Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).
Не сказать, чтобы такой набор знаний можно было получить в каждом втором техническом вузе страны. Крупные компании, у которых в приоритете разработка ИИ, это понимают и разрабатывают под себя соответствующие учебные программы – существует, например, Школа анализа данных от Яндекса. Но вы должны отдавать себе отчёт, что это не тот масштаб, где ты приходишь на курсы «с улицы», а выходишь с них готовым джуниором. Пласт большой, и идти учиться по дисциплине имеет смысл тогда, когда уже охвачена база (математика, статистика) хотя бы в рамках вузовской программы.
Как опытным, так и начинающим программистам рекомендую начать с онлайн-курсов на MOOC-площадках. Например, на Coursera есть отличная специализация «Машинное обучение и анализ данных» от Яндекса и Высшей школы экономики. Если нет проблем с пониманием лекций на английском языке, там же можно пройти курс Эндрю Ына «Machine Learning».
Следующий шаг — изучение проблематики вопроса. Существует огромное количество литературы, как учебной, так и специальной. Большинство публикаций по теме искусственного интеллекта и нейросетей написаны на английском языке, однако русскоязычные материалы тоже публикуются. Полезную литературу можно найти, например, в общедоступной цифровой библиотеке arxiv.org.
Прикладные задачи, решаемые методами ИИ, можно найти в самых разнообразных местах. Банки, финансовый сектор, консалтинг, ритейл, e-commerce, поисковые системы, почтовые сервисы, игровая индустрия, индустрия систем безопасности и, конечно, Avito – все нуждаются в специалистах различной квалификации.
Главный аспект создания искусственного интеллекта — разработка моделей и алгоритмов, которые способны самостоятельно обучаться с опорой на поступающие данные. ИИ постоянно находится в процессе совершенствования навыков и способностей, что позволяет сделать результаты работы лучше и подготовить систему к решению новых задач.
Как сделать свой ИИ самостоятельно: пошаговый план
Искусственный интеллект — привлекательное и перспективное направление, которое приближает мир к фантастическим книгам и играм. Спектр применения AI широк. Они нужны в медицине, автомобилестроении, космосе, науке, поэтому специалист с навыками разработки ИИ — один из ключевых сотрудников IT-компании.
Если надежды на создание собственного AI, который сможет приблизиться к уровню человека, не разбились о гору теоретической литературы, можно приступать к изучению языков. Есть 3 языка программирования, которые стали популярными в области искусственного разума:
Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.
Искусственный интеллект – это та сфера в мире IT, которая активно развивается и имеет как огромную популярность, так и много вопросов. Многие программисты хотят заниматься разработкой ИИ, но не знают с чего начать, поэтому мы решили поделиться с вами вопросом, который пришел от нашего подписчика:
Разные проекты требуют владения разными языками программирования. Я бы рекомендовал знать как минимум Python, Java и любой функциональный язык. Нелишним будет опыт работы с различными базами данных и распределёнными системами. Чтобы быстро изучать лучшие подходы, применяемые в индустрии, требуется знание английского языка.
Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.