Содержание статьи
Что такое нейросеть: как устроен человеческий мозг «в цифре»
Как работает нейросеть
Однако возрождение интереса к нейронным сетям и революция в глубоком обучении произошли лишь в последние годы благодаря индустрии компьютерных игр. Современные игры требуют сложных вычислений для обработки большого числа операций. В итоге производители начали выпускать графические процессоры (GPU), которые объединяют тысячи относительно простых вычислительных ядер на одном чипе. Исследователи вскоре поняли, что архитектура графического процессора очень похожа на архитектуру нейросети.
Архитектура нейронных сетей повторяет структуру человеческого мозга. Клетки человеческого мозга, называемые нейронами, образуют сложную сеть с высокой степенью взаимосвязи и посылают друг другу электрические сигналы, помогая людям обрабатывать информацию. Точно так же искусственная нейронная сеть состоит из искусственных нейронов, которые взаимодействуют для решения проблем. Искусственные нейроны — это программные модули, называемые узлами, а искусственные нейронные сети — это программы или алгоритмы, которые используют вычислительные системы для выполнения математических вычислений.
Обучение не так просто, как кажется. В нейронных сетях есть эффект переобучения: если тренировочных сетов слишком много и они слишком разные, нейросеть «теряется» и перестает эффективно выделять признаки. В результате она может, например, воспринять артефакт графики как чье-то лицо или перепутать мужчину с женщиной. Это происходит из-за размытия весов. И это не единственная ошибка, просто самая известная.
Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.
Как обучают нейросети
Выходной слой дает окончательный результат обработки всех данных искусственной нейронной сетью. Он может иметь один или несколько узлов. Например, при решении задачи двоичной классификации (да/нет) выходной слой будет иметь один выходной узел, который даст результат «1» или «0». Однако в случае множественной классификации выходной слой может состоять из более чем одного выходного узла.
Само обучение бывает контролируемым и глубоким. В первом случае специалисты по работе с данными загружают для обучения нейросети помеченные наборы данных, которые заранее содержат правильный ответ. В процессе обучения нейросеть накапливает знания, а затем получает новые данные, чтобы построить уже свои предположения.
В последние годы нейронные сети прошли путь от простых сортировщиков картинок на смартфонах до помощников в решении глобальных задач в науке. Современные нейросети способны заменить или дополнить работу человека во всех случаях, когда решение нужно принимать на основе предыдущего опыта. «РБК Тренды» разбирался, как устроены и работают нейросети, как их обучают и в каких сферах применяют.
Разработчик нейронных сетей — это специалист, который создает архитектуру, а также решает теоретические и прикладные задачи систем искусственного интеллекта. Он, в частности, проектирует методики машинного обучения и ведет аналитическую работу в области специализированного программного обеспечения.
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.
Искусственный интеллект — это область компьютерных наук, которая исследует методы предоставления машинам возможности выполнять задачи, требующие человеческого интеллекта. Машинное обучение — это метод искусственного интеллекта, который дает компьютерам доступ к очень большим наборам данных для дальнейшего обучения. Программное обеспечение для машинного обучения находит шаблоны в существующих данных и применяет эти шаблоны к новым данным для принятия разумных решений. Глубокое обучение — это разновидность машинного обучения, в котором для обработки данных используются сети глубокого обучения.
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
Как работает нейронная сеть
Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.
Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.
Идею нейронных сетей впервые предложили исследователи из Чикагского университета Уоррен Маккалоу и Уолтер Питтс в 1944 году. Первую обучаемую нейросеть в 1957 году продемонстрировал психолог Корнеллского университета Фрэнк Розенблатт. Она была примитивной (одноуровневой).
С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.
Нейронные сети могут анализировать человеческую речь независимо от ее речевых моделей, высоты, тона, языка и акцента. Виртуальные помощники, такие как Amazon Alexa и программное обеспечение для автоматической транскрипции, используют распознавание речи для выполнения следующих задач:
Машинное зрение — это способность компьютеров извлекать информацию и смысл из изображений и видео. С помощью нейронных сетей компьютеры могут различать и распознавать изображения так, как это делают люди. Машинное зрение применяется в нескольких областях, например: