Что мы подразумеваем под искусственным интеллектом

0
19

10 вопросов про искусственный интеллект

Готовые решения упрощают внедрение ИИ на предприятии

науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.

ИИ становится неотъемлемой частью бизнеса. Рано или поздно все компании вынуждены будут использовать технологии ИИ, чтобы создать собственную экосистему и сохранить конкурентоспособность. Те, кто пренебрегает прогрессом, в следующие 10 лет рискуют остаться за бортом.

Говоря о технологиях с использованием ИИ, следует понимать, что успешность внедрения ИИ зависит от многих факторов, среди которых необходимое серверное оборудование, программный инструментарий, компетентность сотрудников. А во главе угла — наличие хорошо собранных, классифицированных и непротиворечивых данных. На всех направлениях мы видим колоссальное развитие как со стороны пользователей, так и со стороны вендоров.

ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.

ИИ все шире используется в производственных операциях, что привело к появлению нового термина — адаптивный интеллект. Адаптивные интеллектуальные приложения помогают принимать более эффективные бизнес-решения за счет использования внутренних и оперативных внешних данных в реальном времени и высокомасштабируемой инфраструктуры.

Современные кейсы чаще всего касаются производственных задач. Причем если еще несколько лет назад эти проекты были скорее предметом научной статьи, то сейчас они играют важную роль в корпоративных процессах. Наглядный пример — прогнозирование отказов типового оборудования. В этом случае недостаточно просто спрогнозировать отказ узла или детали. Нужно классифицировать такие отказы и способы их ремонта, научиться предсказывать те из них, которые следует превентивно устранять. Причем важно уметь прогнозировать отказы с запасом времени, чтобы успеть среагировать.

Большинство компаний сделали изучение данных своим приоритетом и вкладывают в него значительные средства. Опрос McKinsey 2021 года по ИИ показал, что количество компаний, сообщивших о внедрении ИИ по крайней мере в одной функции, увеличилось до 56 % по сравнению с 50 % годом ранее. Кроме того, 27% респондентов сообщили, что по крайней мере 5% доходов могут быть связаны с искусственным интеллектом, по сравнению с 22% годом ранее.

ЧИТАТЬ ТАКЖЕ:  Нейросеть как рисует

Mayflower — это полностью автономное морское исслед овательское судно с искусственным интеллектом. Его цель — сбор критически важных данных об океане. На борту установлено научное оборудование. В роли капитана корабля – ИИ. Ассимилируя данные из ряда источников, ИИ постоянно оценивает свой маршрут, статус и миссию и принимает решения о том, что делать дальше. Камеры и системы компьютерного зрения сканируют горизонт в поисках опасностей, а потоки метеорологических данных выявляют потенциально опасные штормы.

Обучение и развитие моделей ИИ

Если говорить о навыках в области ИИ-этики и науке о данных, то острая нехватка квалифицированных кадров, безусловно, тормозит развитие на глобальном уровне. Быстрого решения этой проблемы нет, но компании могут инвестировать в развитие навыков у сотрудников и, опять же, использовать средства ИИ для персонализации обучения, как это делает IBM.

Если опустить разговоры про отсутствие на сегодняшний день сильного или общего искусственного интеллекта, то слабые стороны ИИ сейчас во многом определяются уровнем соблюдения этики или способностью построить объективно справедливые модели, а также качеством используемых данных.

Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.

Чтобы повысить точность этих моделей, инженер будет передавать данные в модели и настраивать параметры до тех пор, пока они не достигнут заданного порога. Эти потребности в обучении, измеряемые сложностью модели, растут в геометрической прогрессии с каждым годом.

ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям

Исходя из общения с заказчиками, бизнес-партнерами и академическим сообществом, Россия не отстает от мировых тенденций, а в некоторых областях даже является одним из лидеров во внедрении ИИ. Учитывая структуру экономики, ИИ внедряется в первую очередь в геологоразведке, финансовых организациях и нефтегазовой отрасли. Но мы знаем о вполне успешных пилотных проектах и внедрениях в медицине и образовании.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь