Содержание статьи
Искусственный интеллект, нейронные сети и машинное обучение в маркетинге: в чем разница
Нейросеть и искусственный интеллект: разница есть, или это одно и то же?
Если вы попробуете самостоятельно разобраться и для начала откроете Википедию на статье, например, про перцептрон, то скорее всего вас ждет разочарование – вроде и по-русски написано, но ничего не понятно! Если только вам не повезло изучать математику в университете, но тогда и заметка вам не нужна.
Представьте: если бы искусственный интеллект и нейросети были во времена Ньютона, и вместо того, чтобы размышлять об устройстве мироздания лежа под яблоней, сэр Исаак стал бы «скармливать» своей нейросетке видеозаписи падения разных предметов – перышка, шишки, чугунного ядра, куска материи, пылинки… Узнали бы мы тогда о законе всемирного тяготения? Вряд ли. Не верите? Вот описание одного эксперимента XVII века, которое приводит Ноам Хомский в том же интервью:
Компьютер Deep Blue стоимостью в $10 млн, в котором было 480 специализированных шахматных процессоров и 30 обычных, обыграл чемпиона мира Каспарова еще в 1997 году. Но простая задача, с которой справляется маленький ребенок, – отличить котика от собачки – долго была машинам не под силу. Пока на сцену не вышли сверточные нейронные сети.
Дело, конечно, не в котиках – хотя по количеству публикаций на эту тему может сложиться мнение, что распознавание котиков и есть главная задача современной науки. На самом деле программисты и математики решали проблему компьютерного зрения, чтобы научить машины «видеть» с помощью нейронных сетей. Это нужно в робототехнике, беспилотных автомобилях, медицинской диагностике, системах безопасности и много еще где. А котики – ну просто так повелось, это был один из первых примеров на распознавание образов.
Нейросеть — это математическая модель, которая имитирует работу человеческого мозга. А искусственный интеллект — технология, которая использует эти модели, чтобы решить задачу пользователя. Помимо нейросетей ИИ использует и другие инструменты: машинное обучение (Machine Learning), глубокое обучение (Deep Learning) и другие.
Перцептрон — самый фундаментальный и старый тип. Состоит из одного нейрона, который принимает входные данные и практически сразу выдает результат. У классического варианта этой нейросети нет скрытых слоев, поэтому она может разделять данные только на две категории. Примером использования перцептрона может быть задача классификации почтовых отправлений на спам и не спам.
Машинное обучение и нейронные сети: разница в контексте маркетинга неочевидна
Тем не менее, опираясь на здравый смысл, даже из беглого просмотра статей по ИИ в Википедии один полезный вывод можно сделать сразу. Искусственный интеллект и нейронные сети, однослойные и многослойные, сверточные и рекуррентные, обучение с учителем и без, глубокое и неглубокое – это все чертовски сложно! Значит, должно быть очень мало людей, которые действительно разбираются в предмете, и еще меньше тех, кто может применить математические абстракции на практике. Отсюда следует, что большинство «экспертов в области ИИ» на самом деле таковыми не являются, – их просто не может столько быть физически, поэтому весьма высок риск нарваться на шарлатанов или далеких от жизни романтиков (что может быть и хуже). Будьте осторожны, лапши для ушей по теме ИИ на рынке фантастически много!
Нейросеть же, для обучения которой используются, допустим, фотографии лошадей, в принципе неспособна прийти к такой абстракции, как сферический конь. А человек может. Именно это отличает фундаментальную науку от статистических обобщений, которыми занимаются нейросети. Благодаря гениальным догадкам ученых, которые затем проходят экспериментальную проверку, мы получаем новые знания об окружающем мире.
Говорит профессор ВШЭ, Константин Воронцов, один из настоящих экспертов в области ИИ: «Я считаю, что слово “глубинное” имеет в русском языке другой смысл: глубинным бывает залегание нефти, бомбометание, отложение и т. д. “Глубокое” – это более математичный термин, потому что суперпозиция функций может быть глубокой, но не глубинной, а нейронная сеть – это именно суперпозиция функций». Так что не путайте, говорите правильно!
Первые два года дела шли ни шатко ни валко, хорошим результатом считалась ошибка распознавания 25%, что с научной стороны может и хорошо, но для практических целей применения нейронных сетей совершенно непригодно. Представьте себе беспилотное такси, которое в одном случае из четырех не понимает, дерево перед ним или человек. И вот в 2012 году неожиданно с двукратным отрывом от остальных участников побеждает система глубокого обучения на основе сверточной нейронной сети, которая смогла достичь 16% ошибки! В следующие годы ошибка упала до нескольких процентов.
Сегодня сфера искусственного интеллекта переживает бурный рост. Развитие машинного обучения, нейронных сетей и больших данных позволяет создавать системы, способные решать задачи, которые раньше считались невозможными для ЭВМ. Со стороны это кажется магией. Но волшебству есть научное объяснение. Рассказываем простыми словами о сложном, отвечая на самые популярные вопросы о новых технологиях.
«Один из основных экспериментов в истории химии в 1640 году или около того, когда кто-то доказал, к удовольствию всего научного мира вплоть до Ньютона, что воду можно превратить в живую материю. Вот как они это делали — конечно, никто ничего не знал о фотосинтезе, — они брали кучу земли и нагревали ее так, чтобы вся вода испарялась. Землю взвешивали, вставляли в нее ветку ивы и поливали сверху водой, измерив объем этой воды. Когда ивовое дерево выросло, вы опять берете землю, выпариваете из нее воду — так же, как и раньше. Таким образом, вы показали, что вода может превратиться в дуб или что-то еще. Это эксперимент, и он вроде бы даже верный, но вы не знаете, что вы ищете. И это было неизвестно до тех пор, пока Пристли не открыл, что воздух — это компонент мира, в нем есть азот и так далее, и вы узнавали про фотосинтез и прочее. Тогда вы можете повторить эксперимент и понять, что происходит. Но вас легко может увести не в ту сторону эксперимент, который кажется успешным из-за того, что вы недостаточно хорошо понимаете, что вам следует искать. И вы еще больше уйдете не в ту сторону, если попробуете изучать рост деревьев так: просто взять массив данных о том, как деревья растут, скормить его мощному компьютеру, провести статистический анализ и получить аппроксимацию того, что произошло».