Чем отличается нейросеть от машинного обучения

0
15

Deep learning & Machine learning: в чем разница

Когда использовать Machine learning в бизнесе?

Следовательно, лучше рассматривать то, что делает глубокое обучение уникальным в рамках машинного обучения, вместо противопоставления глубокого обучения и машинного обучения. В широком смысле, особенности, которые делают глубокое обучение уникальным, включают структуру алгоритма нейронной сети, меньшую необходимость в человеческом вмешательстве и более обширные требования к данным. Давайте рассмотрим их по отдельности:

Ответом на этот вопрос является наличие структурированных данных , о чем было написано выше в определении машинного обучения для чайников. Вы просто маркируете изображения собак и кошек, для того чтобы определить особенности обоих животных. Этих данных будет достаточно для обучения алгоритма машинного обучения, и затем он продолжит работу на основе понятных им маркировок и классифицирует миллионы других изображений обоих животных по признакам, которые он изучил ранее.

Мы уже говорили о том, что нейронные сети и глубокое обучение не являются полностью независимыми концепциями. Когда мы говорим о глубоком обучении, мы имеем в виду “глубину” слоев и узлов в нейронной сети. Таким образом, нейронная сеть, состоящая из более чем трех слоев (включая входной и выходной), считается алгоритмом глубокого обучения.

Глубокое обучение описывает алгоритмы, которые анализируют данные с логической структурой, подобной тому, как человек делает выводы из исследования данных и проб и ошибок. Обратите внимание, что это может происходить как через контролируемое, так и через неконтролируемое обучение.

Бесконечные споры вокруг искусственного интеллекта приводят к путанице. Существует много терминов, которые кажутся похожими, но это не так. Мы постараемся разобраться и противопоставить искусственный интеллект (ИИ или artificial intelligence, AI), машинное обучение (machine learning, ML), глубокое обучение (deep learning) и нейронные сети (neural networks), чтобы их разграничить.

Машинное обучение — это общий термин, обозначающий, когда компьютеры учатся на данных. Это перекресток компьютерных наук и статистики, где используются алгоритмы для выполнения конкретной задачи без явного программирования; вместо этого они распознают паттерны в данных и делают прогнозы, когда появляются новые данные.

Основные выводы

Нет, не является. Это широко распространенное недоразумение, поскольку основное отличие между ИИ и нейронными сетями заключается в том, что ИИ или искусственный интеллект — это целая область компьютерных наук, которая изучает и создает интеллектуальные машины, обладающие своим интеллектом. В то время как нейронная сеть относится к системе искусственных узлов, которые составляют нейронные сети, отчасти вдохновленные мозгом животных.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая добавляет улыбку

Другой вывод заключается в том, что важно развеять путаницу вокруг нейронных сетей и глубокого обучения, а также машинного обучения и глубокого обучения. Необходимо помнить, что глубокое обучение — это просто система нейронных сетей с более чем тремя слоями, и алгоритмы глубокого обучения фактически являются алгоритмами машинного обучения.

Примечание . Это всего лишь пример, который поможет вам понять различия в том, как работают основы машинного и глубокого обучения. И Deep learning, и Machine learning на самом деле не применимы одновременно к большинству случаев, включая этот. Причину этого вы узнаете позже.

Наибольшее преимущество нейронной сети в том, что она может легко адаптироваться к изменяющимся паттернам выходных данных. Кроме того, вам не нужно корректировать её каждый раз на основе предоставляемого ввода, что может быть достигнуто с помощью контролируемого или неконтролируемого обучения.

Во-вторых, модели глубокого обучения требуют гораздо меньше человеческого вмешательства, чем их обычные аналоги в машинном обучении. Например, ИИ для автономного автомобиля будет иметь возможность распознавать дорожные знаки без ручного вмешательства инженера-программиста, также известного как извлечение признаков.

Как уже упоминалось, ИИ относится к машинам, которые могут имитировать когнитивные навыки человека. Нейронные сети, с другой стороны, представляют собой сеть искусственных нейронов или узлов. Они отдаленно вдохновлены биологическими нейронными сетями, которые составляют человеческий мозг.

Подмножество машинного обучения, где алгоритмы создаются и функционируют аналогично машинному обучению, но существует множество уровней этих алгоритмов, каждый из которых обеспечивает различную интерпретацию данных, которые он передает. Такая сеть алгоритмов называется искусственными нейронными сетями. Простыми словами, это напоминает нейронные связи, которые имеются в человеческом мозге.

Нейронные сети Deep learning будут использовать другой подход для решения этой проблемы. Основным преимуществом Deep learning является то, что тут не обязательно нужны структурированные / помеченные данные изображений для классификации двух животных. В данном случае, входные данные (данные изображений) отправляются через различные уровни нейронных сетей, причем каждая сеть иерархически определяет специфические особенности изображений.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь