Чем отличается искусственный интеллект от программы

0
23

Искусственный интеллект (AI), машинное обучение и глубокое обучение: в чём разница

Слабый ИИ (Weak, или Narrow AI)

Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.

А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.

Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.

В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.

Во многих случаях программе машинного обучения предоставляют много входных данных (например, изображений, текстов, сообщений), в которых она находит общие паттерны и выявляет закономерности. Такой метод машинного обучения называется «обучение с учителем». Существуют и другие подходы: «обучение с частичным участием учителя», «обучение без учителя» (оно же «обучение без присмотра») и «обучение с подкреплением».

Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.

Машинное обучение: как учится ИИ

По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»

ЧИТАТЬ ТАКЖЕ:  Что такое сингулярность искусственного интеллекта

Машинное обучение (МО) — это разновидность искусственного интеллекта, которая использует результаты обучения на наборах данных для создания моделей, способных выполнять сложные задачи. Вместо программирования МО использует алгоритмы, чтобы анализировать данные, обучаться на них и принимать обоснованные решения. По мере обучения и увеличения количества данных алгоритмы становятся все более точными, то есть чем больше данных будет использовано в процессе, тем лучше и эффективнее будет модель.

Из определений видно, что машинное обучение является подмножеством, одним из компонентов искусственного интеллекта, то есть они отличаются, но при этом тесно связаны. ИИ — более широкое понятие, которое определяет способность компьютерной системы думать, рассуждать и действовать как человек. В то же время МО — одно из направлений ИИ, позволяющее компьютерной системе обучаться на данных и принимать решения, основанные на результатах обучения. Помимо МО в понятие ИИ входит также глубокое обучение (Deep Learning), робототехника, обработка естественного языка (NLP) и другие направления.

Основное отличие заключается в том, что машинное обучение никаким образом не имитирует человеческий интеллект, а занимается выявлением закономерностей в данных. У МО более узкая, специфичная сфера применения: создание прогнозных моделей, в то время как у ИИ гораздо больше возможностей для использования в решении самых разных задач.

Искусственный интеллект (ИИ) — это специализированное программное обеспечение, которое для выполнения сложных задач имитирует когнитивные способности человека, а именно его способность обучаться, рассуждать и анализировать информацию. ИИ, как и человек, может принимать решения, делать переводы текстов, анализировать исторические данные и многое другое, на что ранее было способно только человеческое мышление. Другими словами, искусственным интеллектом можно назвать набор программных инструментов, которые заставляют вычислительные машины вести себя разумно как человек.

Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь