Искусственный интеллект для чего

0
18

Искусственный интеллект

Что такое обработка естественного языка?

Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.

Исследования в сфере искусственного интеллекта делятся на две категории: теоретические и практические; последние, в свою очередь имеют базовые и прикладные аспекты. Направлений исследования ИИ два. Первое, биологическое, основывается на том, что раз человек обладает интеллектом, искусственные системы должны имитировать его психологию или физиологию. Второе, феноменологическое, изучает само понятие интеллекта, проблемы, стоящие перед миром и способы достижения целей. Оба этих подхода в определённой степени взаимодействуют между собой. Также исследования ИИ тесно взаимодействуют с философией, особенно современной аналитической, так как обе отрасли науки изучают мышление [5] .

Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.

Еще одна из ключевых этических проблем, связанных с ИИ, — это конфиденциальность. Поскольку системы искусственного интеллекта собирают огромные объемы данных из баз данных по всему миру, необходимо обеспечить защиту личной информации и ответственное ее использование. Например, технология распознавания лиц, часто используемая в системах безопасности или на платформах социальных сетей, вызывает вопросы о получении предварительного согласия и возможном неправомерном использовании.

Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.

ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.

ЧИТАТЬ ТАКЖЕ:  Как бесплатно пользоваться нейросетью

Описание

Искусственный интеллект — это наука и технология создания интеллектуальных машин, в первую очередь интеллектуальных компьютерных программ. Интеллект в данном случае — это вычислительная способность достигать целей в мире, присущая человеку, многим животным и некоторым машинам. При этом до сих пор в научном сообществе нет чёткого понимания, какие вычислительные функции считать интеллектом в силу понимания только части из них; по этой причине точного общепринятого определения интеллекта, не завязанного на интеллект человека, не существует. Также из-за того, что интеллект — это сложное понятие, состоящее из множества свойств и функций, некоторые из которых до сих пор не поддаются вычислительным машинам, невозможно чётко отделить «интеллектуальные» машины от «не интеллектуальных»; многие из вычислительных систем, созданных для выполнения той или иной функции можно назвать «в какой-то мере интеллектуальными» [1] .

В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).

Одна из наиболее осуществимых систем применения ИИ — эвристика, то есть сортировка информации по категориям, используя имеющиеся данные. Пример такой деятельности — анализ контрагентов при банковских операциях [7] . Ещё одна сфера, в которой искусственный интеллект необходим — самоорганизующиеся системы, то есть компьютерные системы, способные изменять себя согласно заданным параметрам, условиям окружающей среды или необходимым к выполнению задачам [9] .

Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.

По своей сути машинное обучение — это способность компьютерной системы обучаться на основе данных, не будучи явно запрограммированной. Одним из примеров является фильтрация спама в электронной почте. Обнаруживая схожие закономерности в спам-сообщениях, почтовые платформы могут узнать, какие письма полезны, а какие следует держать подальше от папки «Входящие».

Глубокое обучение — это разновидность машинного обучения. Тем не менее, глубокое обучение может анализировать больше типов информации и выполнять более сложные операции. Процесс глубокого обучения вдохновлен структурой и функциями человеческого мозга — в частности, тем, как нейроны связаны между собой и работают вместе для обработки информации. Благодаря этому, глубокое обучение позволяет делать более тонкие и глубокие прогнозы на основе предоставленных данных.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь