Программирование нейросетей на каком языке

0
22

5 языков программирования ИИ для начинающих

Julia

Однако в качестве инструмента для разработки игр, Python выглядит более полезным. В командах разработчиков игр очень важна мобильность кода — он должен быть легко передан, воспринят и понят членами команды разработчиков, от опытных до новичков, находящихся в разных местах физически.

Microsoft активно поддерживает C# и даже создала для него библиотеку ML.NET, которая содержит всё необходимое для работы с машинным обучением. Компания активно обкатывала библиотеку на протяжении десяти лет и только после этого выложила в открытый доступ. По замыслу разработчиков, она должна стать альтернативой многочисленным библиотекам Python и сделать C# ведущим языком в ML. Но пока это только мечты — прямо сейчас найти работу в сфере искусственного интеллекта на C# не так просто.

Поскольку алгоритмы машинного обучения создаются с целью улучшения предыдущих итераций, машинное обучение является основным направлением развития ИИ на сегодняшний день. Однако инструменты, необходимые для разработки этих алгоритмов, известны далеко не всем. В этой статье мы рассмотрим различные языки программирования ИИ, их достоинства и недостатки.

Разработка искусственного интеллекта — не такая уж и непонятная, как может показаться с первого взгляда, задача. В своей основе ИИ представляет собой последовательность алгоритмов, предназначенных для выполнения конкретной задачи. Алгоритм — это просто способ, с помощью которого пользователь указывает компьютеру, каким образом выполнять ту или иную задачу.
Например, можно написать короткий алгоритм для определения наибольшего из трех чисел. В этом алгоритме компьютеру предлагается сравнить все три числа между собой и вывести число, которое больше двух других. В свою очередь алгоритмы искусственного интеллекта — это более специализированный тип алгоритмов.
Когда речь идет об искусственном интеллекте, большее количество подобных алгоритмов объединяется для выполнения более сложных процессов. Однако некоторые алгоритмы ИИ позволяют компьютерам самообучаться и улучшать свои предыдущие результаты. Такой подход чаще всего называют машинным обучением.

Алгоритмический воркфлоу построен таким образом, чтобы воспринимать и обрабатывать информацию в манере, напоминающей человеческий разум. Этот процесс, являющийся начальным состоянием программы ИИ, в дальнейшем применяется на набор данных, относящихся к решаемой проблеме.
Получив набор данных, алгоритм или модель ИИ распознает в них закономерности и пытается учиться на них. При выполнении второй итерации алгоритма на наборе данных он использует знания, полученные в ходе первой итерации, постепенно совершенствуясь в решении проблемы. Этот процесс повторяется до тех пор, пока модель не достигнет определенной степени точности. Этот процесс называется обучением модели.
Чтобы убедиться, что модель ищет наиболее оптимальное решение, обычно рассчитывают так называемую “функцию стоимости”. Функция стоимости определяет, насколько эффективно алгоритм справляется с поставленной задачей, рассчитывая некоторый процент ошибки в конечном результате работы алгоритма.
После того как модель прошла обучение и научилась самостоятельно решать задачу, ее можно запустить в работу. Такой подход позволяет получить алгоритмы, точность и эффективность которых превосходит человеческий труд.
Языки, используемые для создания этих сложных алгоритмов ИИ, похожи на те, что применяются для создания других компьютерных программ. Однако в последнее время на первый план выходит концепция, известная как фреймворки. Фреймворки строятся на основе существующих языков программирования, но предоставляют уникальную функциональность, позволяющую создавать алгоритмы искусственного интеллекта.

Python — один из самых популярных выборов для программистов в области искусственного интеллекта. У Python есть ряд особенностей, которые делают его отлично подходящим для программирования ИИ — этот язык легко изучать и читать. Создатель Python разработал этот язык так, чтобы он легко читался; это совсем не то же самое, что беспорядочные строки кода в языках, созданных ранее. Названия функций и сам код написаны на простом английском языке, что снижает сложность обучения для начинающих пользователей.
Язык Python является мощным и универсальным. Этот язык можно использовать для решения самых разных задач — от создания веб-страниц до создания искусственного интеллекта. Он совместим с большинством платформ и поддерживает множество методов программирования. Благодаря этим возможностям Python позволяет разработчикам ИИ сосредоточиться на создании рабочего процесса алгоритма, а не на написании кода и его отладке.
Одним из важнейших преимуществ Python для ИИ по сравнению с другими языками программирования является широкая поддержка библиотек ИИ. Библиотеки — это наборы функций, облегчающие реализацию определенных концепций. Эти библиотеки могут добавить специализированную функциональность ИИ в языки Python общего назначения. Давайте подробнее рассмотрим наиболее популярные библиотеки ИИ для Python.

R — это язык программирования, широко используемый в науке о данных — профессии, в которой активно применяется искусственный интеллект. Наука о данных подразумевает обработку и анализ данных для поиска закономерностей с помощью искусственного интеллекта, используя статистику и математику. В программном обеспечении имеется обширный набор библиотек для решения задач науки о данных, таких как преобразование, предварительная обработка и анализ данных.
Большинство преимуществ R заключается в его возможностях по статистической обработке данных. Они включают линейное и нелинейное моделирование, анализ временных рядов, кластеризацию и визуализацию. Кроме того, он способен эффективно хранить данные и получать к ним доступ, что делает его отличным выбором для построения алгоритмов машинного обучения.
R не рекомендуется использовать начинающим программистам или специалистам по искусственному интеллекту, поскольку он имеет крутую кривую обучения. Однако в корпоративных системах, где обрабатываются большие объемы данных, польза от изучения R будет очень велика.

ЧИТАТЬ ТАКЖЕ:  Midjorney нейросеть как пользоваться

Искусственный интеллект (AI), машинное обучение (ML) и глубокое обучение (DL) в настоящее время активно используются в компаниях для упрощения различных бизнес-процессов. Более того, с облачными решениями в области искусственного интеллекта, ставшими простым способом для компаний внедрять в свои сервисы ИИ и предоставлять их для обычных пользователей, здесь открываются новые возможности в эпоху мобильных вычислений.

C#

Примеры ML-проектов на Java: Seldon Server ― движок для создания рекомендательных систем, который позволяет развернуть нейронную сеть для рекомендаций, даже если вы новичок; GROBID ― программа для парсинга и извлечения информации даже из неструктурированных документов.

Некоторые из крупнейших компаний мира, в том числе Google, Facebook, Amazon и Microsoft, уже ступили на путь повсеместного использования искусственного интеллекта. Эти компании не только внедряют ИИ-решения в свои продукты, но и предоставляют инструменты и фреймворки, предназначенные для программирования ИИ. В частности, компания Google выложила в открытый доступ многие из своих выдающихся разработок в области ИИ, что свидетельствует о его растущей популярности среди инженеров-программистов.

Одновременно существует две версии языка: Python 2 и Python 3. У Python 3 нет обратной совместимостью со второй версией — то есть код, написанный на старой версии, не будет работать в новой. Советуем изучать именно Python 3 — предыдущий уже официально не поддерживается.

Многие студии используют движки для разработки игр, такие как Unreal, Unity или Lumberyard (или их сочетание), требующие определенной интеграции. Lisp пока не предлагает (насколько нам известно) простого подхода для работы с такими ограничениями или интеграциями. И хотя в некоторых вариантах есть определенные подвижки, этот язык все еще остается гораздо более сложным в использовании и поддержке.

Для разработки алгоритмов ИИ сегодня могут использоваться различные универсальные и специализированные языки программирования, наиболее популярным из которых является универсальный Python. Python используется энтузиастами ИИ из-за его мощности и в то же время простому синтаксису, что делает язык одинаково доступным как для новичков, так и для опытных пользователей.
R, специальный язык программирования используемый для статистических вычислений, — также популярен для разработки алгоритмов ИИ. R хорошо подходит для современного ИИ, поскольку позволяет легко обрабатывать большие объемы данных. Кроме того, статистика является важной частью разработки модели ИИ, что делает его вторым, наиболее распространенным языком программирования для ИИ.
Кроме них, для программирования ИИ используются такие языки программирования, как C++ и Java. Эти языки используются в тех случаях, когда существует конкретная потребность, которая может быть решена только с их помощью. Другим популярным вариантом для программирования ИИ является Scala — объектно-ориентированный язык программирования.
Чтобы определиться с языком программирования ИИ предлагаем подробнее узнать о каждом из них.

Java — еще один широко используемый язык для программирования ИИ. Впервые появившись более 20 лет назад, в 1995 году, Java используется программистами ИИ из-за подхода «один раз напиши, выполни где угодно». Язык Java разработан таким образом, чтобы иметь наименьшее количество зависимостей, что означает низкие требования для его запуска на любой платформе.
Java отличается от других языков программирования наличием уникальной виртуальной машины, известной как Java Virtual Machine (JVM). JVM выступает в роли посредника между кодом, написанным на Java, и машиной, на которой он выполняется. Это одна из причин, по которой Java является портативным и простым в исполнении.

SciKit-Learn -— это еще одна библиотека Python, которая работает с важной частью рабочего процесса ИИ — данными. SciKit-Learn предоставляет функции для классификации, выбора моделей и предварительной обработки данных. Она часто используется для приложений по добыче и анализу данных. Эта библиотека с открытым исходным кодом используется для обработки данных и управления ими таким образом, чтобы алгоритмам было удобно их воспринимать.

Кроме перечисленных выше языков, сегодня большую популярность приобретает Lisp. На вопрос о причинах этого Даниэль Вивона, генеральный директор UDX Interactive, отвечает: «Lisp и его разновидности — языки, предоставляющие программисту широкие возможности. Его растущая популярность является отражением зрелости области ИИ. Для крупных проектов, в которых имеются исследовательские группы или много опытных программистов в области ИИ, Lisp является отличным языком.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь