Программирование искусственного интеллекта на чем

0
19

5 языков программирования ИИ для начинающих

Стадия 3. Развитие

SciKit-Learn -— это еще одна библиотека Python, которая работает с важной частью рабочего процесса ИИ — данными. SciKit-Learn предоставляет функции для классификации, выбора моделей и предварительной обработки данных. Она часто используется для приложений по добыче и анализу данных. Эта библиотека с открытым исходным кодом используется для обработки данных и управления ими таким образом, чтобы алгоритмам было удобно их воспринимать.

Разработка искусственного интеллекта — не такая уж и непонятная, как может показаться с первого взгляда, задача. В своей основе ИИ представляет собой последовательность алгоритмов, предназначенных для выполнения конкретной задачи. Алгоритм — это просто способ, с помощью которого пользователь указывает компьютеру, каким образом выполнять ту или иную задачу.
Например, можно написать короткий алгоритм для определения наибольшего из трех чисел. В этом алгоритме компьютеру предлагается сравнить все три числа между собой и вывести число, которое больше двух других. В свою очередь алгоритмы искусственного интеллекта — это более специализированный тип алгоритмов.
Когда речь идет об искусственном интеллекте, большее количество подобных алгоритмов объединяется для выполнения более сложных процессов. Однако некоторые алгоритмы ИИ позволяют компьютерам самообучаться и улучшать свои предыдущие результаты. Такой подход чаще всего называют машинным обучением.

Разработчики AI должны стремиться к созданию этичной технологии, которая сделает человеческую лучше, а не добавит новые трудности и угрозы, включая захват мира, о котором уже много лет пишут фантасты. Терминатором управляет совершенный ИИ, до которого, конечно, далеко, но когда-то полет на самолете казался фантастикой.

Комплексную методику используют в крупных проектах, поскольку требуется широкая и неоднородная база данных. Обучающая часть используется для получения базовых навыков, тестовая — для оценки качества и работоспособности, валидационная — для настройки гиперпараметров

Некоторые из крупнейших компаний мира, в том числе Google, Facebook, Amazon и Microsoft, уже ступили на путь повсеместного использования искусственного интеллекта. Эти компании не только внедряют ИИ-решения в свои продукты, но и предоставляют инструменты и фреймворки, предназначенные для программирования ИИ. В частности, компания Google выложила в открытый доступ многие из своих выдающихся разработок в области ИИ, что свидетельствует о его растущей популярности среди инженеров-программистов.

Многие студии используют движки для разработки игр, такие как Unreal, Unity или Lumberyard (или их сочетание), требующие определенной интеграции. Lisp пока не предлагает (насколько нам известно) простого подхода для работы с такими ограничениями или интеграциями. И хотя в некоторых вариантах есть определенные подвижки, этот язык все еще остается гораздо более сложным в использовании и поддержке.

Стадия 1. Разочарование

Кроме перечисленных выше языков, сегодня большую популярность приобретает Lisp. На вопрос о причинах этого Даниэль Вивона, генеральный директор UDX Interactive, отвечает: «Lisp и его разновидности — языки, предоставляющие программисту широкие возможности. Его растущая популярность является отражением зрелости области ИИ. Для крупных проектов, в которых имеются исследовательские группы или много опытных программистов в области ИИ, Lisp является отличным языком.

ЧИТАТЬ ТАКЖЕ:  Искусственный интеллект как начать работу

Python — один из самых популярных выборов для программистов в области искусственного интеллекта. У Python есть ряд особенностей, которые делают его отлично подходящим для программирования ИИ — этот язык легко изучать и читать. Создатель Python разработал этот язык так, чтобы он легко читался; это совсем не то же самое, что беспорядочные строки кода в языках, созданных ранее. Названия функций и сам код написаны на простом английском языке, что снижает сложность обучения для начинающих пользователей.
Язык Python является мощным и универсальным. Этот язык можно использовать для решения самых разных задач — от создания веб-страниц до создания искусственного интеллекта. Он совместим с большинством платформ и поддерживает множество методов программирования. Благодаря этим возможностям Python позволяет разработчикам ИИ сосредоточиться на создании рабочего процесса алгоритма, а не на написании кода и его отладке.
Одним из важнейших преимуществ Python для ИИ по сравнению с другими языками программирования является широкая поддержка библиотек ИИ. Библиотеки — это наборы функций, облегчающие реализацию определенных концепций. Эти библиотеки могут добавить специализированную функциональность ИИ в языки Python общего назначения. Давайте подробнее рассмотрим наиболее популярные библиотеки ИИ для Python.

Многие популярные библиотеки также представлены на Java, например Deeplearning4j — библиотека с открытым исходным кодом, ориентированная на приложения глубокого обучения, и Neuroph — библиотека для построения нейронных сетей на Java. Java также обладает мощными возможностями для обработки данных, что позволяет полностью управлять пайплайном данных в корпоративной среде.
Кстати, средняя зарплата выпускников Kata через год — 221 000 рублей. Так что если ты планировал начать карьеру в IT, сейчас самое время. Переходи по ссылке и узнавай подробности.

Java — еще один широко используемый язык для программирования ИИ. Впервые появившись более 20 лет назад, в 1995 году, Java используется программистами ИИ из-за подхода «один раз напиши, выполни где угодно». Язык Java разработан таким образом, чтобы иметь наименьшее количество зависимостей, что означает низкие требования для его запуска на любой платформе.
Java отличается от других языков программирования наличием уникальной виртуальной машины, известной как Java Virtual Machine (JVM). JVM выступает в роли посредника между кодом, написанным на Java, и машиной, на которой он выполняется. Это одна из причин, по которой Java является портативным и простым в исполнении.

Поскольку алгоритмы машинного обучения создаются с целью улучшения предыдущих итераций, машинное обучение является основным направлением развития ИИ на сегодняшний день. Однако инструменты, необходимые для разработки этих алгоритмов, известны далеко не всем. В этой статье мы рассмотрим различные языки программирования ИИ, их достоинства и недостатки.

Искусственный интеллект создают с помощью machine learning model и deep learning — методов, которые позволяют программе изучить массивы информации и принимать решения или создавать похожие объекты. ML-модели вместе с технологией нейронных сетей используют для решения разных задач:

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь