Искусственный интеллект что делает

0
30

На что способен искусственный интеллект сегодня и каков его потенциал

На что способен искусственный интеллект уже сейчас

PwC прогнозирует увеличение мирового ВВП на $15,7 трлн к 2030 году благодаря развитию искусственного интеллекта. К этому времени Китай станет ведущей мировой державой в сфере ИИ с увеличением ВВП на 26%, Северная Америка будет следующей с ростом ВВП на 14,5%, за ней последует рост на 11–12% в крупнейших экономиках Европы. Развивающиеся страны получат наименьшую выгоду, поэтому есть риск усиления цифрового неравенства.

Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.

На сегодняшний день искусственный интеллект ученые определяют, как алгоритмы, способные самообучаться, чтобы применять эти знания для достижения поставленных человеком целей. Системы машинного обучения (основной подраздел ИИ) автоматизировали процессы во всех жизненно важных областях, включая банкинг, ретейл, медицину, безопасность, промышленность. Выделяют три вида искусственного интеллекта: слабый (Narrow AI), сильный (AGI) и супер-ИИ (Super AI). Первый вид используются повсеместно (включая голосовых ассистентов, рекламу в соцсетях, распознавание лиц, поиск романтических партнеров в приложениях и так далее); эти системы слабого ИИ единственные доступные на сегодня. Сильный ИИ максимально приближен к способностям человеческого интеллекта и наделен по классическому определению Тьюринга самосознанием; по мнению экспертов, AGI сформируется примерно к 2075 году, а спустя еще 30 лет придет время для супер-ИИ. Супер-ИИ мог бы не просто стать подобным людям, но и превзойти лучшие умы человечества во всех областях, при этом перепрограммируя самого себя, продолжая совершенствоваться и, вероятно, разрабатывая новые системы и алгоритмы самостоятельно.

Алгоритмы помогают врачам ставить диагнозы. Например, «СберМедИИ» (входит в экосистему «Сбера») и Лаборатория по искусственному интеллекту Сбербанка совместно разработали приложение AI Resp: нейросеть анализирует голос пациента, дыхание и кашель, чтобы определить вероятность коронавирусной инфекции. Ранее Лаборатория по ИИ и «СберМедИИ» представили онлайн-сервис «КТ Легких», определяющий локализацию и степень поражения легких для диагностики вирусной пневмонии, в том числе COVID-19, по снимкам компьютерной томографии. Также при использовании этого сервиса ИИ позволяет выявлять онкологические заболевания на ранней стадии при анализе КТ грудной клетки и может помогать врачам при диагностике.

Почти три четверти бизнес-лидеров положительно оценивают роль ИИ после пандемии и сопутствующего кризиса. Большинство руководителей (74%) не только ожидают рост эффективности бизнес-процессов, но и создание новых бизнес-моделей (55%), новых продуктов и услуг (54%) — благодаря внедрению ИИ.

ЧИТАТЬ ТАКЖЕ:  Востребованность и выполнение услуги реверс-инжиниринга

Чтобы компания извлекала прибыль, недостаточно вложить средства в алгоритм и получить первые успешные результаты после запуска пилотного проекта. Внедрение ИИ — это многоуровневый процесс, включающий культурные изменения в компании, найм и обучение специалистов по data science, автоматизацию и построение бизнес-процессов с учетом алгоритмов, и на этом весь список не заканчивается.

Что такое нейронные сети и как они работают?

Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.

Большинство опрошенных компаний инвестируют в ИИ (90%) и согласны с тем, что данные технологии способствуют развитию бизнеса, выяснили MIT Sloan Management Review и BCG. Тем не менее, компании так и не научились извлекать из ИИ реальную выгоду. И это не единственный проблемный момент в сфере искусственного интеллекта.

Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.

ИИ развивается с высокой скоростью, и то, что называлось полгода назад state-of-the-art (высшим уровнем развития), сегодня может оказаться средней разработкой. Если раньше в сфере искусственного интеллекта была занята узкая прослойка специалистов, сейчас при таком огромном спросе попросту не хватает квалифицированных кадров, способных справиться с постоянно развивающейся технологией, отмечает Жуков.

Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.

Качество данных — второе по значимости препятствие для внедрения ИИ, после нехватки специалистов. Для успешных результатов алгоритмам необходимы качественные «вводные», включая размеченные и чистые данные. Неправильно заданные паттерны могут провоцировать систему делать ложные выводы: например, ошибочно сигнализировать о мошеннической транзакции, или осудить невиновного.

Такие гиганты как Alibaba, Amazon, Facebook, Google массово используют глубокие искусственные нейронные сети, например, Long-Short-Term Memory, чтобы предсказать спрос пользователей и дольше удерживать их на своих платформах, заставляя переходить по большему количеству рекламных объявлений.

Применение в другом контексте. Хотя искусственный интеллект сегодня способен выполнять различные функции — от распознавания кошек и собак до предсказания поломок на нефтяных платформах, — это все еще узконаправленные задачи. ИИ пока что не умеет применять полученные навыки в непривычных условиях.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь