Обучение нейросетей как

0
26

Обучение нейронной сети

С учителем

При этом нередки ситуации, в которых модели необходима хотя бы частичная «разметка» данных для результативной работы. В этом случае потребуется частичное привлечение учителя: он заранее размечает часть данных самостоятельно , а остальные подаются модели в неразмеченном виде. Этот вариант не только повышает эффективность «тренировок» модели, но и значительно ускоряет их.

Искусственный интеллект в бизнесе используют для разных задач. У этой технологии нет жестких ограничений, поэтому разработчики могут реализовать любую функциональность. Главное — организовать процессы обучения и контроля результатов. В 2024 году ИИ внедряют в промышленность, банковскую сферу, компьютерные игры, образование, медицину и т.д.

Тренировочный набор данных для этого типа обучения важно разметить, то есть каждому примеру сопоставить результат, который модель должна получить. Для этого над входным датасетом следует предварительно поработать: учитель собирает его заранее, просматривает и размечает в понятном для обработки виде.

У моделей искусственного интеллекта сложна архитектура, которая состоит из множества элементов, настраивающихся в автоматическом режиме. Есть разные подходы, как обучить ИИ выполнять определенную задачу. Один из вариантов — предоставить обработанные данные (например, чертежи с прописанными площадями), а затем дать нейросети задачу самому указать площади в «сырых» чертежах.

Прохождение игр — часто встречающаяся задача, которую решает обучение с подкреплением. Так, например, алгоритм Q-обучения (Q-learning) часто используется в играх — например, для тренировки агента прохождению знакомой всем «Змейки » . Другой пример — нейросетевая модель AlphaGo, которая обучена играть в го на уровне мировых чемпионов.

Для того чтобы обучение с подкреплением было результативно, важно пройти много предварительных тренировок. Долгий период развития навыков модели и необходимость большого количества примеров называют главными минусами этого формата. Если в будущей работе нейросеть столкнется с незнакомой ситуацией, то реакция будет непредсказуема.

Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?

Метод обучения с учителем ( supervised learning) аналогичен получению знаний в школе, где нейросеть выступает в качестве ученика, а человек — в роли преподавателя. Роль учителя заключается в том, чтобы подать на вход модели исходные данные и их «расшифровку » . По аналогии с математическими задачами это будет «вопрос » и «правильный «ответ » (метка). Например, при обучении задаче классификации изображений каждой отдельной картинке будет присвоена метка, означающая класс изображения (например, кошка или собака на фото). Так происходит настройка параметров для минимизации ошибок между собственными предположениями и « правильными ответами» (метками). Сопоставляя их из раза в раз, нейронная сеть б удет самос тоятельно обучаться отвечать и на последующие запросы правильно уже без помощи человека.

ЧИТАТЬ ТАКЖЕ:  Какие профессии связанные с нейросетями

Без учителя

Специфика нейронных сетей заключается в том, что они используются для решения интеллектуальных и сложных задач, для которых нет единственно верного ответа. Из-за этого программист не может просто заложить определенный механизм действий. Вместо этого ИИ-разработчики занялись обучением нейронной сети, во время которого компьютер получает данные (обработанные или нет) и на их основе пытается решить поставленную задачу.

Отсутствие контроля человека при тренировке моделей увеличивает вероятность ошибок. Самостоятельный анализ данных может привести к неверному объединению или группировке по тем признакам, которые не важны для человека. Кроме того, подобная подготовка требует большего количества времени и информации — ведь для того, чтобы без подсказок учителя сделать верные выводы, нужно проанализировать больший объем информации, чем с ними.

Машинное обучение без учителя (unsupervised learning) — менее популярный формат развития навыков нейросетей . Из названия понятно, что оно предполагает самостоятельное совершенствование модели. Как это работает? На вход модели подаются неразмеченные данные и система без чьей-либо помощи ищет в них закономерности. Этот формат отличается от предыдущего тем, что модели заранее не известен «правильный ответ» и его нужно найти. Для поиска следует проанализировать все данные и обнаружить в них общие скрытые структуры или паттерны для будущей классификации, которую она проводит без явного руководства. Модель, натренированная таким образом, легко справится с задачей распределения тысяч статей по тематике в зависимости, например, от упоминаемых ключевых слов.

Обучение с учителем используется для нейросетей , которые в дальнейшем будут решать задачи классификации: получать на входной слой большой объем данных и разделять информацию по заданным категориям. Этот механизм лежит в основе разных функций: модель может в будущем специализироваться и на генерации текста или продолжении предложений (нейронная сеть LSTM), и на идентификации и классификации картинок (сверточная нейронная сеть CNN). Кроме того, обучение с учителем позволяет модели успешно работать с прогнозами: оценивать динамику спроса на товар и менять цену и другие количественные характеристики для максимизации выручки или строить прогноз на бирже.

После разработки нейросети нельзя сразу вводить в эксплуатацию. Необходимо провести обучение нейронной сети, в рамках которого она получит достаточно входных данных и опыта для выполнения определенных задач. Хотя модели искусственного интеллекта часто сравнивают с человеческим мозгом, принципы и способы машинного обучения существенно отличаются.

При этом обучение с подкреплением рассчитано не только на успешное прохождение игр. Нейросети , подготовленные к самостоятельной работе таким способом, могут в дальнейшем управлять транспортом в качестве автопилота или выступать техподдержкой, получая положительную обратную связь за каждый верно решенный запрос.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь