Нейросети на чем пишут

0
16

7 нейросетей для программистов: как писать код быстрее и лучше

ChatGPT

Snyk Code — это нейросеть для быстрого анализа кода на уязвимости. Она может проверять не только написанный вами код, но и обнаруживать проблемы в безопасности в сторонних библиотеках и фреймворках. Это может быть особенно полезно для больших проектов, где используется много внешних библиотек.

Распространенными задачами, для решения которых привлекаются нейронные сети, являются: классификация — разделение данных по значимым признакам, прогнозирование — предсказывание следующего шага, распознавание -анализ изображения (объекта) с дальнейшей классификацией [4, 5].

Задача предсказания (прогноза), решаемая нейронной сетью, заключается в получении на выходном слое ожидаемого значения при подаче на входной слой соответствующих данных. В рассматриваемой задаче нет строгой математической функции, связывающей строку входных данных с выходными, поэтому и предлагается использовать нейронную сеть. Обученная нейронная сеть должна определить статистическое соответствие между входными и выходными данными — результат коррелирует с крайним левым столбцом входных данных. Обратное распространение ошибок заключается в подсчете подобной статистики при создании нейронной сети.

нейронные сети / программные среды / нейронные сети для начинающих / библиотеки и языки программирования / задача классификации / задача прогнозирования. / neural networks / software environments / learning how neural networks work for beginners / libraries and programming languages / classification problem / forecasting problem

Проведен анализ различных программных сред, которые могут быть использованы на лабораторных и практических занятиях по изучению и применению нейронных сетей. Выделен современный облачный сервис Google Colaboratory, рекомендуемый для обучения основам нейронных сетей благодаря наличию в нем предустановки библиотеки Tensorflow и библиотеки для работы на языке Python, бесплатного доступа к графическим процессорам, возможности написания и выполнения програм -много кода в браузере, а также отсутствию необходимости специальной настройки сервиса.

Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.

Итоги

В последние годы методы глубинного обучения — нейронные сети — позволили достичь впечатляющих успехов в таких областях, как компьютерное зрение, обработка естественного языка, обработка аудио [1, 2]. Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений, подобных выполняемым человеческим мозгом. Бытует мнение, что нет таких задач, с которыми не может справиться нейронная сеть, только было бы достаточно примеров для ее обучения [3].

Помимо того, что в Colaboratory можно писать и выполнять код Python в браузере, не требуется настройка сервиса, имеется бесплатный доступ к графическим процессорам и документам других пользователей. Все это делает облачный сервис Colaboratory доступным решением для обучения студентов основам нейронных сетей.

Рассматриваются примеры проектирования нейронных сетей в Colaboratory, в частности, решение задач распознавания и классификации изображений, прогнозирования. Показано, что для распознавания и классификации изображений может быть использована сверточная нейронная сеть, особенностью которой является получение карты признаков изображения с последующей сверткой. Приведены фрагменты программного кода для этапов подключения необходимых библиотек, загрузки датасетов, нормализации изображений, сборки нейронной сети и ее обучения.

Предоставление информации. Когда нейросеть обучают, ей «показывают» данные, по которым необходимо что-то предсказать, и эталонные правильные ответы для них — это называется обучающей выборкой. Информации должно быть много — считается, что минимум в десять раз больше, чем количество нейронов в сети. Во время обучения нейросети показывают какую-либо информацию и говорят, что это такое, т.е. дают ответ. Все данные представляются не посредством слов, а с помощью формул и числовых коэффициентов. Например, изображению женщины соответствует «1», а изображению мужчины — «0». Это простой пример; реальные сети устроены сложнее. Преобразования. Входные нейроны получают информацию, преобразуют ее и передают дальше. Содержание информации автоматически обрабатывается с помощью формул и превращается в математические коэффициенты. Примерно как то, что мы видим глазами, превращается в нервные импульсы и передается в мозг. Он их обрабатывает, и человек понимает, что находится вокруг него. Здесь принцип похож. Обработка и выводы. У каждого нейрона есть «вес» — число внутри него, рассчитанное по особым алгоритмам. Он показывает, насколько показания нейрона значимы для всей сети. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются. В результате складывается ситуация, когда определенные нейроны реагируют, например, на силуэт человека — и выдают информацию, которая преобразуется в ответ: «Это человек». При этом человека не нужно описывать как набор математических фигур — во время обучения нейронная сеть сама задает значения весов, которые определяют его. Результат. Выводом нейронной сети становится набор формул и чисел, которые преобразуются в ответ. Например, если изображение мужчины — «0», а женщины — «1», то результат 0,67 будет означать что-то вроде «Скорее всего, это женщина». Нейросеть из-за своей структуры не может дать абсолютно точный ответ — только вероятность. И из-за закрытости и нестабильности нейронов ее показания могут различаться даже для одинаковых выборок.

ЧИТАТЬ ТАКЖЕ:  Что значит технологии искусственного интеллекта

В статье рассмотрены способы и методы изучения и построения нейронных сетей . Показано, что изучение принципов функционирования нейронных сетей , их применение для решения тех или иных задач возможны только через практику. Проведен анализ различных программных сред , которые могут быть использованы на лабораторных и практических занятиях по изучению и применению нейронных сетей . Выделен современный облачный сервис Google Colaboratory, рекомендуемый для обучения основам нейронных сетей благодаря наличию в нем предустановки библиотеки Tensorflow и библиотеки для работы на языке Python, бесплатного доступа к графическим процессорам, возможности написания и выполнения программного кода в браузере, а также отсутствию необходимости специальной настройки сервиса. Рассматриваются примеры проектирования нейронных сетей в Colaboratory, в частности, решение задач распознавания и классификации изображений, прогнозирования. Показано, что для распознавания и классификации изображений может быть использована сверточная нейронная сеть, особенностью которой является получение карты признаков изображения с последующей сверткой. Приведены фрагменты программного кода для этапов подключения необходимых библиотек, загрузки датасетов, нормализации изображений, сборки нейронной сети и ее обучения. Решение задачи прогнозирования рассмотрено на примере нейронной сети прямого распространения с алгоритмом обратного распространения ошибок в процессе обучения, суть которой в получении на выходном слое ожидаемого значения при подаче на входной слой соответствующих данных. Обратное распространение ошибок заключается в настройке весовых коэффициентов, дающих наибольшую корреляцию между входным набором данных и соответствующим ему результатом.

Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.

Что такое нейросети?

Поскольку все изображения для обучения нейронной сети должны иметь одинаковое разрешение, в переменной SIZE необходимо это указать, например 224*224. Затем проводится нормализация изображений — числовые значения пикселей переводятся в диапазон [0, 1] путем деления значения каждого пикселя на 255:

но). Слой пулинга представляет собой нелинейное уплотнение карты признаков, при котором группа пикселей уплотняется до одного пикселя, проходя нелинейное преобразование. Полносвязный слой выполняет нелинейные преобразования извлеченных признаков и собственно реализует классификацию. Для решения проблемы переобучения используется метод Dropout(0.2), где 0.2 — доля нейронов, случайно выключаемых из процесса обучения.

Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.

Для программирования нейронных сетей в настоящее время наиболее часто используется язык Python благодаря множеству библиотек с набором встроенных математических функций, таких как произведение векторов, транспонирование и тому подобное. Например, используя библиотеку Numpy, можно разработать простую нейронную сеть, решающую задачу прогнозирования. Библиотека Keras применяется при программировании сетей прямого распространения и решения задач распознавания речи. Для нейронных сетей, работающих с изображениями, необходимо подключение другого модуля, например TensorFlow [6].

«Я много использовала ChatGPT для задач в data science — например, размечала с помощью неё данные. Обращалась к ней, когда нужно было разобраться со сложными алгоритмами, и иногда просила объяснить, как работает какая-нибудь функция из неизвестного для меня фреймворка. А ещё просила переписать скрипт с C++ на Python».

«Copilot может генерировать большие участки кода по текстовому описанию. Я использовала его, когда нужно было, например, написать код для соединения разных сервисов с СУБД (MongoDB и Redis). До этого мне не приходилось работать с ними, поэтому нейросеть писала всё сама. И хотя функции нужно было написать довольно базовые, радует то, что не пришлось долго изучать документацию и тратить на это время».

Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее. Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.

Сейчас на слуху «творчество нейросетей»: сгенерированные машиной тексты и стихи, несуществующие картины и фотографии людей, почти похожие на настоящие. Для человека вне IT это выглядит как чудо. Но на самом деле нейронные сети хорошо объясняются математически, хотя результат их работы действительно невозможно предсказать.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь