Содержание статьи
Как устроена нейронная сеть и зачем ей слои
Как обучают нейросети
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.
Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.
Но в отличие от Монте-Кристо у него есть входной S-слой (сенсорный). Туда мы подаем числа в промежутке [0..1]. Например, картинка с котиком. Берём каждую точку, преобразуем в градации серого и записываем во входной узел по правилу, где 0 — белый цвет, а чем ближе к 1, тем более тёмные мысли у нашей точки.
Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.
Кроме того, есть входной и выходной слои. Входной принимает информацию и преобразовывает ее, например переводит картинку в матрицу из чисел. Выходной обрабатывает результат и представляет его в понятном человеку виде. Например, результат 0,77827273 он представит как «с точностью в 78% это такой-то предмет».
В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.
Пулинг также помогает выделить наиболее значимые признаки из данных, что делает модель более устойчивой к шуму и искажениям. Например, если изображение немного изменится (например, сдвинется или изменится освещение), слой пулинга все равно сможет распознать основные формы и объекты.
Какими бывают нейросети
Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.
В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.
Генеративно-состязательные сети (GAN) состоят из двух нейронных сетей — генератора и дискриминатора. Генератор использует слои для создания новых данных, а дискриминатор применяет слои для оценки реалистичности сгенерированных данных. Поэтому сетки, построенные на GAN, хорошо работают с задачами генерации новых данных — создания изображений или музыки.
Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Слои нормализации решают эту проблему, выравнивая, нивелируя разницу во входных данных. Они вычисляют среднее значение и стандартное отклонение входных данных для мини-батча и нормализуют их, чтобы значения были в диапазоне от 0 до 1. Это помогает нейросети обучаться быстрее и лучше обобщать данные.
Как устроена нейросеть
Нейронные сети имитируют работу человеческого мозга, чтобы обрабатывать и анализировать данные. Они обучаются на большом объёме информации, выявляя закономерности и связи между сущностями. Это позволяет им выполнять сравнительно сложные когнитивные задачи — распознавать изображения, обрабатывать естественный язык и прогнозировать сценарии развития событий в специфических областях.
Эти сложные алгоритмы, вдохновлённые работой человеческого мозга, способны обрабатывать огромные объёмы данных и выявлять закономерности, которые трудно заметить с помощью традиционных методов анализа. Нейронные сети находят применение в самых различных областях — от финансовых прогнозов и диагностики заболеваний до персонализированного маркетинга и автоматизации производственных процессов.
Правильная комбинация слоев и архитектур может значительно повысить производительность нейронной сети и качество результатов её работы. Различные типы нейронных сетей имеют свои особенности внутренней архитектуры, а что ещё важнее — та или иная архитектура лучше справляется с тем или иным типом задач. Вот пара примеров:
Например, в случае распознавания изображений первые скрытые слои могут обнаруживать простые элементы (края и углы), а последующие слои комбинируют эти элементы в более сложные структуры (формы и объекты). Количество скрытых слоев потенциально бесконечно — их количество зависит от сложности задачи и архитектуры нейронной сети.
Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.
Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.