Содержание статьи
Как создать и обучить нейросеть
Как можно улучшить нейронную сеть
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Пусть у нас уже есть нейронная сеть, но ведь ее ответы являются случайными, то есть наша нейросеть не обучена. Сейчас она способна лишь по входному вектору input выдавать случайный ответ, но нам нужны ответы, которые удовлетворяют конкретной поставленной задаче. Дабы этого достичь, сеть надо обучить. Здесь потребуется база тренировочных примеров и множество пар X — Y, на которых и будет происходить обучение, причем с использованием известного алгоритма обратного распространения ошибки.
Но полученный вектор представляет собой неактивированное состояние (промежуточное, невыходное) всех нейронов, а для того, чтобы нам получить выходное значение, нужно каждое неактивированное значение подать на вход вышеупомянутой функции активации. Итогом ее применения и станет выходное значение слоя.
Генеративные модели (пожалуй, самые известные из них сегодня — генеративно-состязательные сети, или GAN) способны генерировать осмысленные тексты и реалистичные изображения, аудио или видео. Это делает их незаменимыми в создании разного типа контента. Кроме того, такие модели применяются для синтезирования данных, когда разработчикам не хватает реальных данных для обучения нейросетей.
Трансформеры — сравнительно новая архитектура, которая позволяет нейросетям сразу видеть весь текст вместо того, чтобы читать его слово за словом. Они хорошо подходят для понимания больших объёмов данных и активно применяются в системах машинного перевода, чат-ботах и для генерации текста.
Обучение начинается с того, что нейросеть получает данные и их метки, своего рода правильные ответы (например, подписи к картинкам). Сеть пропускает данные через себя и делает предсказание. После этого она сравнивает предсказание с правильным ответом и вычисляет, насколько оно отличается — это будет ошибкой, которую предстоит минимизировать.
После успешного тестирования нейросеть готова к практическому использованию. Это включает этап развёртывания, когда модель интегрируют в реальные приложения или системы — от чат-ботов и программ обработки фотографий до голосовых помощников и систем автоматического перевода.
Давайте внимательно посмотрим на него. Вышенаписанная формула — это не что иное, как определение умножения матрицы на вектор. И в самом деле, если мы возьмем матрицу W размера n на m и выполним ее умножение на X размерности m, то мы получим другое векторное значение n-размерности, то есть как раз то, что надо.
Методы обучения и алгоритмы оптимизации Методы обучения и алгоритмы оптимизации
После того как архитектура выбрана, разработчики переходят к инициализации весов. Веса — это параметры сети, которые определяют, как сильно входной сигнал влияет на выходной. Плохая инициализация может привести к проблемам с обучением. Например, если инициализировать все веса константными значениями, сеть может слишком медленно обучаться. Решить проблему можно с помощью метода Xavier, когда веса равномерно распределяются, что позволяет сети быстрее находить правильное решение.
Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:
В течение нескольких дней участники фестиваля погружаются в мир искусственного интеллекта и нейросетей. Они знакомятся с тем, как создаются сложные ИИ-системы, которые используются не только в повседневной жизни, но и в научных проектах. Например, нейросети помогают учёным считать рачков в Байкале.
Процесс обучения нейросетей начинается с постановки задачи: нужно точно определить, какую задачу предстоит решать. Например, если нужно определить, изображена на фотографии корова или лошадь, то это задача классификации. Если нужно предсказать цены акций на бирже, это задача временных рядов.
Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.
На фестивале 8БИТ выступают разработчики Яндекса, которые делятся своим опытом и раскрывают секреты создания сервисов на основе искусственного интеллекта. К примеру, эксперты объясняют, что помогает Алисе разговаривать более естественно и как алгоритмы учатся писать тексты.
Развёртывание и интеграция с другими системами Развёртывание и интеграция с другими системами
Этот метод особенно полезен, когда есть ограниченное количество данных для обучения. Он ускоряет разработку и снижает требования к ресурсам. К примеру, модель BERT, созданная для обработки естественного языка, после небольшого дообучения может применяться для классификации текстов или поиска ответов.
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Еще есть, например, метод обратного распространения ошибки — градиентный алгоритм для многослойных нейросетей. Сигналы ошибки, рассчитанные с помощью градиента, распространяются от выхода нейронной сети к входу, то есть идут не в прямом, а в обратном направлении.
Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:
Нейросимвольные системы сочетают нейросети с методами искусственного интеллекта на основе логики и правил. Этот гибридный подход позволяет моделям не только учиться на данных, но и использовать знания, заданные в виде логических выражений, что улучшает их способность к рассуждению и принятию решений. Этот метод востребован для решения сложных задач, требующих логического мышления, например в области робототехники.
В рамках мастер-классов участники фестиваля самостоятельно пишут код и создают чат-боты. Это позволяет начинающим разработчикам или подросткам, которые только задумываются о карьере в IТ, попробовать свои силы на практике, получить советы от экспертов и вдохновение для будущих проектов.