Содержание статьи
В чем разница между ИИ и машинным обучением и почему это важно
Ключевые понятия в сфере искусственного интеллекта
При этом одной из проблем является то, что все эти термины, находясь в обиходе, порой понимаются и используются довольно небрежно – что может приводить как к взаимному непониманию, так и просто к неграмотному употреблению. Эта проблема затрудняет качественное и объективное представление результатов проводимых исследований и разработок, описание ИИ-решений и связанных с ними проектов разным аудиториям, а также эффективную коммуникацию между заинтересованными лицами.
Если ваша организация только планирует внедрить ИИ в бизнес-процессы, вам необходим надежный технологический партнер с релевантной экспертизой и опытом — это позволит снизить первоначальные затраты и получить результат уже в ближайшее время. Узнайте в Colobridge, какое решение будет максимально соответствовать потребностям вашего бизнеса и какие вычислительные ресурсы для этого необходимы.
Бытует мнение, что одни из самых продвинутых и точных моделей машинного обучения для применения в задачах здравоохранения создаются с использованием глубокого обучения. Но на самом деле это не так. Среди научных исследований и практических разработках существует множество примеров, когда с помощью обычного классического машинного обучения были созданы эффективные и точные решения. При этом они обладает более высокой объяснимостью и меньшими требованиями ко времени обучения и объемам наборов данных.
Практически ни одна конференция или проект, связанный с цифровым здравоохранением, не обходятся без упоминания ИИ. Мы повсеместно слышим о машинном обучении, предиктивной аналитике, чат-ботах, компьютерном зрении, обработке естественного языка. А в последнее время стали популярными еще и такие термины, как генеративный ИИ, большие языковые модели и т.д.
Набор данных (dataset) — состав данных, которые структурированы или сгруппированы по определенным признакам, соответствуют требованиям законодательства и необходимы для разработки программ для электронных вычислительных машин на основе искусственного интеллекта.
Машинное обучение (Machine Learning, ML) — процесс автоматического обучения и совершенствования поведения системы искусственного интеллекта на основе обработки массива обучающих данных без явного программирования [ГОСТ Р 59895-2021, статья 2.1.7]
Искусственный интеллект (Artificial intelligence, AI) комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые с результатами интеллектуальной деятельности человека или превосходящие их ( Указ Президента РФ от 10.10.2019 N 490 (ред. от 15.02.2024) «О развитии искусственного интеллекта в Российской Федерации» (вместе с «Национальной стратегией развития искусственного интеллекта на период до 2030 года»).
Машинное обучение является базовой технологией ИИ, позволяющей создавать программные модели, которые на основе данных помогают компьютеру обучаться без непосредственных инструкций со стороны человека (ПРИМЕНЕНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА ФИНАНСОВОМ РЫНКЕ. Доклад для общественных консультаций. Центральный банк Российской Федерации, 2023).
Термины в области прогнозной аналитики
Данные реальной клинической практики, RWD (real-world data, RWD) — информация о состоянии здоровья пациентов и/или об оказании медицинской помощи, полученная из различных источников вне рамок предрегистрационных клинических исследований. [ГОСТ Р 59921.3—2021, пункт 3.2]
Машинное обучение (МО) — это разновидность искусственного интеллекта, которая использует результаты обучения на наборах данных для создания моделей, способных выполнять сложные задачи. Вместо программирования МО использует алгоритмы, чтобы анализировать данные, обучаться на них и принимать обоснованные решения. По мере обучения и увеличения количества данных алгоритмы становятся все более точными, то есть чем больше данных будет использовано в процессе, тем лучше и эффективнее будет модель.
Достаточно часто под термином искусственный интеллект понимается широкая область знаний, которая опирается на исследования разных наук (компьютерных наук, статистики, экономики, нейробиологии, лингвистики, психологии и философии), каждая из которых имеет свой понятийный аппарат, предметную область исследований и методологическую базу.
Эксперт Colobridge: «Хотя машинное обучение по сути является составляющей искусственного интеллекта, говорить об их совместном использовании вполне корректно. Сочетание машинного обучения и искусственного интеллекта мы часто наблюдаем в самых разных сферах. Например, в здравоохранении это может быть анализ медицинских данных пациентов, прогнозирование результатов лечения, ускорение разработки новых лекарственных препаратов. На производстве — мониторинг оборудования и выявления потенциальных проблем в будущем, повышение эксплуатационной эффективности. В ритейле — прогнозирование спроса, составление персонализированных рекомендаций. А в финтехе — анализ рисков, выявление случаев мошенничества. В каждом из этих случаев своя роль отведена как ИИ, так и МО, которые к тому же могут работать с другими дисциплинами — например, математической статистикой и аналитикой».
Искусственный интеллект (ИИ) — это специализированное программное обеспечение, которое для выполнения сложных задач имитирует когнитивные способности человека, а именно его способность обучаться, рассуждать и анализировать информацию. ИИ, как и человек, может принимать решения, делать переводы текстов, анализировать исторические данные и многое другое, на что ранее было способно только человеческое мышление. Другими словами, искусственным интеллектом можно назвать набор программных инструментов, которые заставляют вычислительные машины вести себя разумно как человек.
Основное отличие заключается в том, что машинное обучение никаким образом не имитирует человеческий интеллект, а занимается выявлением закономерностей в данных. У МО более узкая, специфичная сфера применения: создание прогнозных моделей, в то время как у ИИ гораздо больше возможностей для использования в решении самых разных задач.
Из определений видно, что машинное обучение является подмножеством, одним из компонентов искусственного интеллекта, то есть они отличаются, но при этом тесно связаны. ИИ — более широкое понятие, которое определяет способность компьютерной системы думать, рассуждать и действовать как человек. В то же время МО — одно из направлений ИИ, позволяющее компьютерной системе обучаться на данных и принимать решения, основанные на результатах обучения. Помимо МО в понятие ИИ входит также глубокое обучение (Deep Learning), робототехника, обработка естественного языка (NLP) и другие направления.
Во многих случаях программе машинного обучения предоставляют много входных данных (например, изображений, текстов, сообщений), в которых она находит общие паттерны и выявляет закономерности. Такой метод машинного обучения называется «обучение с учителем». Существуют и другие подходы: «обучение с частичным участием учителя», «обучение без учителя» (оно же «обучение без присмотра») и «обучение с подкреплением».