Содержание статьи
Лучший язык программирования для разработки ИИ в 2023 году
Какой лучший язык программирования для ИИ?
Предположим, вы знаете любой из вышеперечисленных языков кодирования для ИИ. В этом случае может быть проще разрабатывать приложения ИИ на одном из этих языков, чем изучать новый. В конечном счете, лучший язык ИИ для вас — тот, который вам легче всего выучить.
Машинное обучение — это разновидность искусственного интеллекта, которая помогает компьютерным системам автоматически обучаться и делать прогнозы на основе поступающих наборов данных. Например, система машинного обучения может быть не запрограммирована явно на определение разницы между собакой и кошкой, но она учится различать сама, обучаясь на больших выборках данных. Цель систем машинного обучения — достичь точки, в которой они смогут автоматически обучаться без вмешательства человека и впоследствии выполнять действия. Сценарии использования системы машинного обучения определяют необходимый уровень знаний в области программирования. Если вы хотите использовать машинное обучение для решения реальных бизнес-задач, вам понадобится опыт программирования. Но если вы хотите просто изучить концепции машинного обучения, вам, скорее всего, понадобятся только математические и статистические знания. Для реализации этих моделей вам необходимо понимать основы программирования, алгоритмов, структур данных, управления памятью и логики. Существует множество библиотек машинного обучения с разными языками программирования, что позволяет легко начать работу с базовыми языками программирования. Вот 5 лучших языков программирования для машинного обучения (ИИ):
Язык машинного обучения был специально разработан для реализации базовой математики и научных запросов, из которых состоят многие алгоритмы машинного обучения. Его код является универсальным исполняемым и масштабируемым, что имеет основополагающее значение для инженеров по машинному обучению.
Тем, кто только начинает изучать машинное обучение (МО) и искусственный интеллект (ИИ), может быть сложно решить, с чего начать. Даже те, кто уже работает в этой области, могут задаться вопросом, какой язык программирования машинного обучения лучше. А поскольку широко используется более 700 различных языков программирования, становится еще труднее выбрать лучший для конкретной задачи.
Некоторые из основных библиотек, связанных с Java, включают Weka, JavaML, Deeplearning4j и ELKI. Он также включает виртуальную машину Java, которая является одной из лучших платформ для машинного обучения, поскольку позволяет инженерам писать один и тот же код на нескольких платформах.
Еще одним из лучших языков машинного обучения и программирования ИИ является язык программирования R, который может использоваться как программистами, так и непрограммистами. Непрограммисты, такие как сборщики данных, аналитики данных и статистики, находят множество применений для R.
Р
Вы можете использовать C++ для разработки ИИ, но он не так хорошо подходит, как Python или Java. C++ — сложный язык с крутой кривой обучения. Тем не менее, C++ — отличный универсальный язык, и его можно эффективно использовать для разработки ИИ, если программист знает его.
R широко используется в области биоинженерии и биомедицинской статистики, но он также популярен для реализации машинного обучения, такого как классификация, регрессия и формирование дерева решений. Некоторые библиотеки для R включают CARET для работы с задачами классификации и регрессии, а также PARTY и rpart для создания разделов данных.
Еще один ключевой аспект Java заключается в том, что многие организации уже обладают большими кодовыми базами Java, и многие инструменты с открытым исходным кодом для обработки больших данных написаны на этом языке. Это упрощает инженерам по машинному обучению интеграцию проектов с существующими репозиториями кода.
Язык программирования привел к созданию других языков, таких как Python, Julia и Java. Он также имеет возможность кодировать, компилировать и запускать код на более чем 30 языках программирования. LISP считается высокоэффективным и гибким языком машинного обучения для решения специфических задач, поскольку он адаптируется к решению, для которого пишет код программист, что отличает его от некоторых других ведущих языков.
Java включает в себя множество функций, которые делают ее отличным выбором, например, простота использования, улучшенное взаимодействие с пользователем, пакетные службы, простая отладка и графическое представление данных. Он имеет широкий спектр сторонних библиотек для машинного обучения, таких как JavaML, который представляет собой встроенную библиотеку машинного обучения, предоставляющую набор алгоритмов, реализованных в Java.
Python — лучший язык для ИИ. Он прост в освоении, имеет большое сообщество разработчиков и обширную коллекцию фреймворков, библиотек и кодовых баз. Однако у Python есть некоторые критические замечания: он может быть медленным, а его свободный синтаксис может научить программистов плохим привычкам.