Кто ввел в обращение термин искусственный интеллект

0
19

Искусственный интеллект: между мифом и реальностью

Применение

Для Джона Мак-Карти и Марвина Мински, как и для прочих организаторов летнего семинара в Дартмут-колледже, ИИ изначально представлял собой область науки, занимающейся компьютерным моделированием различных способностей интеллекта, идет ли речь об интеллекте человеческом, животном, растительном, социальном или филогенетическом. В основе этой научной дисциплины лежит предположение о том, что все когнитивные функции, как то обучение, мышление, расчет, восприятие, память, даже научное открытие или художественное творчество, могут быть описаны с точностью, дающей возможность запрограммировать компьютер на их воспроизведение. На протяжении более чем шестидесяти лет существования ИИ не появилось ничего, что позволило бы неоспоримо доказать либо опровергнуть гипотезу, которая продолжает оставаться открытой и побуждает ученых к новым изобретениям.

Несмотря на то, что в самой идее искусственного интеллекта исследователи ориентируются на интеллект человека, симуляция оного на компьютере — не есть цель большей части проектов. Используемый для оценки человеческого интеллекта коэффициент (IQ) не применим для оценки машинных систем, по причине того, что он завязан на интеллектуальное развитие ребёнка и если на взрослых людей эту шкалу можно экстраполировать, то высокие результаты искусственного интеллекта в тесте на IQ не будут означать высокого интеллекта системы. При этом, некоторые из задач, используемых в этих тестах всё же помогают изучать эффективность конкретного искусственного интеллекта. Также, в то время как интеллект всех людей основывается на примерно одинаковых механизмах и развивается приблизительно по одному пути, в машинном интеллекте дело может обстоять с точностью до наоборот: при наличии превосходящих человеческие возможности вычислительных мощностей он основывается на тех принципах и цепочках, которые заложены в него разработчиком, а потому в каждой системе могут, с одной стороны, присутствовать интеллектуальные функции, развиваемые человеком только с подросткового возраста, а с другой — отсутствовать какие-то механизмы, присущие маленьким детям. Осложняется это тем, что природа человеческого интеллекта до сих пор изучена не до конца [1] [2] .

Главное отличие искусственного интеллекта от других программ в отсутствии чётко заданного алгоритма решении задачи [3] . Согласно одной из распространённых версий, есть необходимый набор свойств для программы, чтобы считаться искусственным интеллектом. Исследователи уточняют, что список может быть неполным, так как какие-то из свойств интеллекта ещё не открыты или достаточно не изучены. Список выглядит так [4] :

И наконец, в противоположность некоторым утверждениям, машины не несут в себе экзистенциального риска для человечества, поскольку их автономия носит лишь технический характер и в этом смысле не соответствует цепочкам материальной причинности, идущим от информации к принятию решений. Кроме того, машины не самостоятельны в моральном плане, и потому, даже если иногда они сбивают нас с толку и вводят в заблуждение своими действиями, они все же не обладают собственной волей и подчиняются тем целям, которые мы перед ними ставим.

В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).

Многие результаты, достигнутые с использованием технологий ИИ, превосходят человека: в 1997 году компьютер одержал победу над действующим в то время чемпионом мира по шахматам, а недавно, в 2016 году, другие компьютеры обыграли лучших в мире игроков в го и покер. Компьютеры доказывают или помогают доказывать математические теоремы; автоматически, на основе методов машинного обучения и с помощью огромных массивов данных, объем которых исчисляется в терабайтах (10 в 12-й степени) и даже в петабайтах (10 в 15-й степени), создаются знания.

ЧИТАТЬ ТАКЖЕ:  Как обработать фото нейросетями

История

Конечная цель практически всех исследований в области искусственного интеллекта — получить ИИ уровня, сопоставимого с человеческим интеллектом. В методах достижения этой цели единства у исследователей нет: кто-то считает, что это достижимо в обозримом будущем с применением существующих технологий и подходов путём увеличения вычислительной и запоминающей мощности несущих ИИ-устройств, а кто-то — что сроки загадывать невозможно, так как существующие подходы к созданию искусственного интеллекта требуют переработки или даже полной замены другими [1] .

Ученые также прибегают к этим методам для определения функций биологических макромолекул, в частности белков и геномов, исходя из последовательности их компонентов – аминокислот для белков и оснований для геномов. В целом, во всех науках наблюдается серьезный эпистемологический разрыв, обусловленный качественным отличием экспериментов in silico – получивших такое название потому, что выполняются на основе больших данных с помощью мощных процессоров с кремниевыми чипами – от экспериментов in vivo (на живой ткани) и особенно in vitro (в стеклянных пробирках и чашках Петри).

Однако при ближайшем рассмотрении становится очевидно, что работа для людей не пропадает, а трансформируется, требуя новых навыков. Точно так же независимость человеческой личности и ее свобода не подвергаются неминуемой опасности из-за развития ИИ – при условии, однако, что мы останемся бдительными перед лицом вторжения технологий в частную жизнь.

Преподаватель информатики в университете Сорбонна, профессор Жан-Габриэль Ганасия (Франция) является также научным сотрудником исследовательской лаборатории LIP6, (Laboratoire d’Informatique de Paris 6), действительным членом Европейской ассоциации искусственного интеллекта EurAI (European Association for Artificial Intelligence), членом Университетского института Франции (Institut Universitaire de France) и председателем Комитета по этике Национального научно-исследовательского центра Франции (CNRS). Его научные интересы охватывают такие темы, как машинное обучение, символическое слияние данных, компьютерная этика и цифровые гуманитарные науки.

Однако популярность термина «искусственный интеллект» во многом объясняется его ошибочным толкованием – в частности, когда им обозначают некую искусственную сущность, наделенную разумом, которая якобы в состоянии конкурировать с людьми. Эта мысль из области древних легенд и преданий, звучащая как миф о Големе, с недавних пор реанимируется такими нашими современниками, как британский физик Стивен Хокинг (1942-2018 гг.), американский предприниматель Илон Маск и американский инженер Рэй Курцвейл, а также сторонниками создания так называемого сильного или общего ИИ. Не будем, впрочем, говорить о данном понимании этого термина, ибо оно скорее представляет собой появившийся под влиянием научной фантастики продукт богатого воображения, а не осязаемую научную реальность, подтвержденную опытами и эмпирическими наблюдениями.

Самообучающиеся интеллектуальные системы широко применяются практически во всех сферах, особенно в промышленности, банковском деле, страховании, здравоохранении и обороне. Многие рутинные процессы теперь можно будет автоматизировать, что преобразит наши профессии и, в конечном итоге, устранит некоторые из них.

В 1956 году Джон Маккарти впервые в истории ввёл в оборот термин «искусственный интеллект» (англ. artificial intelligence ). Год спустя Аллен Ньюэлл, Герберт Саймон и Клиффорд Шоу разработали первую программу, попавшую в эту категорию. Она предназначалась для игры в шахматы и в отличие от предыдущих основывалась на эвристике, то есть не имела точных теоретических оснований. В 1960 году ими же была разработана программа для решения головоломок, основанная на тех же принципах [3] .

С конца 1990-х годов ИИ стали объединять с робототехникой и интерфейсом «человек – машина» с целью создания интеллектуальных агентов, предполагающих наличие чувств и эмоций. Это привело, среди прочего, к появлению нового исследовательского направления – аффективных (или эмоциональных) вычислений (affective computing), направленных на анализ реакций субъекта, ощущающего эмоции, и их воспроизведение на машине, и позволило усовершенствовать диалоговые системы (чат-боты).

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь