Содержание статьи
Машинное обучениеMachine Learning
Модель машинного обучения определяет взломанные компоненты энергосистемы
Машинное обучение — практически синоним термина «искусственный интеллект», программы развития которого уже являются национальными во многих странах. Добавлять в приложения возможности машинного обучения становится все проще: многие библиотеки машинного обучения и онлайн-сервисы уже не требуют глубоких знаний в этой области.
На фоне роста интереса к промышленному машинному обучению увеличивается спрос на специалистов в соответствующей области. Количество объявлений о вакансиях в данной сфере поднялось почти в четыре раза с 2018-го по 2022 год. А в течение 2021–2022 годов зафиксирован рост практически на четверть — на 23,4%. Компаниям, расширяющим свои инициативы в области машинного обучения, требуются профессионалы со специфичными техническими навыками, в том числе в области разработки ПО. [1]
С начала 2017 года относительно 2021-го популярность инструментов машинного обучения резко возросла. Это связано как с ростом доверия к их точности, так и со снижением затрат. Многие компании на март 2022 года используют ML для обеспечения точных прогнозов и быстрого анализа больших массивов данных. Именно на этом фоне IBM наращивает инвестиции в искусственный интеллект. Компания фокусируется на инициировании изменений через обработку естественного языка (NLP), автоматизацию и развитие доверия к искусственному интеллекту (ИИ). Кроме того, IBM продолжает внедрять в свои продукты новые способности, полученные в ходе исследований и разработок.
Обучение включает распознавание образов, регрессионный анализ и прогнозирование. Чаще всего используют подход, основанный на построении модели восстанавливаемой зависимости в виде параметрического семейства алгоритмов. Его суть в численной оптимизации параметров модели с целью минимизации число ошибок на заданной обучающей выборке прецедентов.
27 февраля 2018 года технический директор IBM Watson Роб Хай (Rob High) заявил, что в настоящее время основная задача машинного обучения – ограничить объем данных, требующихся для обучения нейросетей. Хай полагает, что есть все основания считать эту проблему вполне разрешимой. Его мнение разделяют и коллеги: так руководитель разработки технологий искусственного интеллекта (ИИ) Google Джон Джаннандреа (John Giannandrea) заметил, что его компания также занята этой проблемой.
Используя эти методики, они фактически отобрали набор слов и сказали: «Итак, слово „гора` часто ассоциируется с тем-то и тем-то, и между словом „гора` и этим изображением наблюдается высокая статистическая корреляция. Так что если люди ищут информацию о горах, покажите им это изображение. Если они ищут гору Фудзи, покажите им это изображение, а не то». В этом и состоял прием совместного использования человеческого мозга и описательных слов. По состоянию на 2017 год этот прием не единственный. На данный момент существует множество более изощренных методик.
Основы машинного обучения
Обучение строится на том, что человеку и программе неизвестны правильные ответы заранее, имеется только некий массив данных. Аналитическая машина, обрабатывая информацию, сама ищет взаимосвязи. Зачастую на выходе оказываются получены неочевидные и нетривиальные решения.
Все то, что происходит в 2016-2017 годах, более прозаично и прагматично, лишено романтических обещаний относительно антропоморфных технологий, имитирующих человеческий мозг. Нет никаких рассуждений о мыслящих машинах и тем более угрозах со стороны роботов. В отчете Gartner цитируется «циничное» и явно неприемлемое для сторонников сильного ИИ высказывание вице-президента IBM по исследованиям Джона Келли:
2. Сформировалась необходимая процессорная база. Известно, что решение задач ML распадается на две фазы. На первой выполняется обучение искусственной нейронной сети (тренировка). На протяжении этого этапа нужно параллельно обработать большое количество образцов. На данный момент для этой цели нет альтернативы графическим процессорам GPU, в подавляющем большинстве случаев используют GPU Nvidia. Для работы обученной нейронной сети могут быть использованы обычные высокопроизводительные процессоры CPU. Это распределение функций между типами процессоров вскоре может претерпеть существенные изменения. Во-первых, уже в 2017 году Intel обещает выпустить на рынок специализированный процессор Nervana, который будет на порядка производительнее, чем GPU. Во-вторых, появляются новые типы программируемых матриц FPGA и больших специализированных схем ASIC, и специализированный процессор Google TensorFlow Processing Unit (TPU).
Изначально этот процесс происходил в игровой форме или заключался в идентификации изображений. Тогдашние исследователи просили участников играть в игры или помогать в обучении простыми утверждениями вроде «Это гора», «Это не гора», «Это гора Фудзи», «Это гора Килиманджаро». Так что у них накопился набор слов. У них была группа людей, использовавших слова для описания изображений (например, в проекте Amazon Mechanical Turk).
В опубликованной работе рассматривается проблема атак на системы машинного обучения с целью добиться желаемого поведения системы или воспрепятствовать ее корректной работе. Первым шагом к противодействию такого рода угрозам, по мнению ученых, является их классификация, понимание их типов, равно как и мест приложения. Это связано с тем, что природа атак на системы машинного обучения и глубокого обучения отличается от других киберугроз.
Аналитической системе дали задание добраться из одной точки в другую, используя двуногую и четырехногую модель. При этом не показали, как выглядит ходьба и перемещение на четырех конечностях. Машина путем перебора массива данных, совершая ошибки и пробуя заново, нашла оптимальные варианты движения для двух моделей.
Состояние электросети может быть составлено из множества точек данных, включая величину, частоту и угол напряжения во всей сети, а также ток. Обнаружение аномалий зависит от выявления аномальных точек данных, которые могут быть вызваны такими вещами, как обрыв кабеля или повреждение изоляции.
Отдел исследований и разработок IBM использует различные подходы, которые помогут создать системы ИИ, ориентированные на 2025-2035 года. Кроме того, компания разрабатывает архитектуры и устройства с огромными вычислительными возможностями, это связано с тем, что оборудование достаточно надежно и быстро, чтобы обрабатывать огромные массивы данных, которые компания производит ежедневно. [3]