Содержание статьи
Какие задачи может решать искусственный интеллект в стоматологии и ортодонтии
Как искусственный интеллект используется в стоматологии?
Искусственный интеллект является мощным инструментом для помощи врачу-стоматологу в диагностике, планировании лечения и прогнозировании результатов. Однако, в настоящее время, искусственный интеллект не может полностью заменить роль врача-стоматолога, т.к. для эффективного лечения пациентов необходимо сочетание технических и межличностных навыков, которые не могут быть полностью заменены машиной. Кроме того, человеческий фактор — это очень важный аспект при лечении заболеваний полости рта, т.к. устранение проблемы не сводится только к технической стороне, но также к психологическому комфорту пациента и установлению эмоциональной связи врача и пациента.
Сегодня уже никого не удивить по-настоящему качественными изображениями, сгенерированными нейронными сетями. За последние пару лет разные компании опубликовали свои версии генеративных нейронных сетей на базе моделей DALL-E от OpenAI и Stable Diffusion. Многие слышали про компанию Midjourney, а также российские версии от Яндекса — Шедеврум и Сбербанка — Kandinsky. Мы начали исследования в этом направлении в далекие 2016-2017 годы, за шесть лет до появления первой версии DALL-E (первая версия появилась в 2021 году) и за семь лет до появления Stable Diffusion (выпущена в 2022 году). На тот момент основным инструментом создания таких моделей были генеративно-состязательные сети (GAN). Первым же коммерческим предложением наших моделей был проект 2018 года от одного российско-европейского издательства по созданию системы генерации обложек для книг на основании краткого содержания.
Искусственный интеллект — это область компьютерных наук, которая стремится создать компьютерную систему, которая может выполнить задачи, которые ранее требовали от человека интеллектуальных умений. Подобные системы могут обучаться, анализировать данные, решать проблемы и принимать решения на основе определенных алгоритмов. Они часто используются в таких областях, как медицина, финансы, робототехника, автоматизация производства, анализ данных и т.д.
Иногда нам приходят запросы на решение совсем нереалистичных задач. Например, прогнозирование курсов популярных валют наподобие евро, доллара, фунта. Конечно, создание такой прогнозной системы невозможно — слишком много экономических, геополитических и других факторов влияют на курс.
В будущем, возможно, искусственный интеллект станет более развитым и сможет выполнять более сложные функции, но необходимость врача-стоматолога всегда будет сохраняться для решения более сложных и нестандартных ситуаций, а также для диагностических и терапевтических процедур, требующих максимальной точности и изящества.
В то же время в нашей истории уже были довольно успешные финансовые проекты, в частности создание системы оптимизации инвестиционного портфеля на основе алгоритмов машинного обучения (40 ценных бумаг / целевая волатильность 30% / ежедневная частота оптимизации баланса) и применение AI/ML к структуре сетевой корреляции для улучшения результатов оптимизации.
Может ли искусственный интеллект заменить врача стоматолога сейчас и в будущем?
Одним из первых таких проектов в далеком 2016 году стала задача предсказания характеристик пользователей: пол, возраст, уровень дохода и образования, психологические черты. Еще одной задачей стало прогнозирование поведения: рекомендации мест, людей, групп на основании данных аккаунтов из социальных сетей с различной модальностью контента (Twitter — тексты, Instagram (принадлежит корпорации Meta, деятельность которой признана в России экстремистской и запрещена) — изображения, Foursquare — геолокации), а также носимых устройств. Результаты таких предсказаний крайне полезны — например, для банков в рамках задачи пополнения данных о клиентах в целях более точного скоринга. В то время социальные сети были более открыты для возможности сбора и анализа данных, поэтому у нас были внушительные «датасеты». Проект показал крайне успешные результаты, но, к сожалению, на тот момент российские компании не были заинтересованы данным направлением, поэтому оно стало развиваться за пределами России, а позже в Сингапуре была создана отдельная компания, которая успешно развивается и в настоящее время.
В течение последних восьми лет наша компания занимается разработкой решений на базе технологий искусственного интеллекта. Про многие из них мы рассказывали в прошлых статьях, посвященных системам компьютерного зрения, а также системам на базе больших языковых моделей и обработки естественных языков. Несмотря на то, что большинство наших решений направлено на решение довольно стандартных задач по оптимизации бизнес-процессов, мы всегда открыты к задачам, которые нередко имеют исследовательскую и научную составляющую.
В настоящей статье мы расскажем про самые удивительные, необычные проекты и запросы, которые поступали нам за последние годы. Некоторые из этих проектов не удалось реализовать, какие-то остановились на ранних стадиях разработки, а другие стали очень успешными.
Такие разработки требуют колоссальных вычислительных мощностей и ресурсов (нейронная сеть DALL-E начала разрабатываться в 2018 году, в 2019 году OpenAI получила грант в 1 млрд $ от компании Microsoft). Наши же разработки велись на базе собственных ресурсов, а также благодаря небольшой поддержке одного фонда в Нидерландах. В конце 2019 года началась пандемия Covid-19, и инвестиционный интерес со стороны фондов угас. Конкурировать с компаниями, имеющими практически неограниченные ресурсы, было сложно, поэтому мы постепенно заморозили это направление, хотя наши обложки продавались по всему миру. Спустя два года руководительница нашего отдела компьютерного зрения защитила диссертацию на тему генеративного ИИ в условиях ограниченных вычислительных ресурсов.
Но криптовалюта, главным образом биткоин, — довольно спекулятивный актив. На его цену влияет и новостная повестка. В 2021 году стоимость биткоина выросла почти на 10% после того, как Илон Маск пообещал возобновить продажу машин Tesla за криптовалюту. Идея создания системы прогнозирования стоимости биткойна основана на анализе сотен крупнейших новостных агрегаторов, а также сообщений в Twitter (X) и других популярных социальных сетях на наличие событий и высказываний, которые потенциально могут влиять на курс. Современные подходы к решению этой задачи на базе больших языковых моделей позволяют довольно точно «отлавливать» такой новостной фон и делать успешные прогнозы.