Содержание статьи
Предпосылки становления и этапы развития технологии искусственного интеллекта Текст научной статьи по специальности «Математика»
PREREQUISITES FOR ESTABLISHMENT AND DEVELOPMENT STAGES OF THE TECHNOLOGY OF ARTIFICIAL INTELLIGENCE
активностью в работе нервных сетей высшего уровня» Г15, рр- 316-3181. Данная точка зрения к настоящему времени является лишь частично верной, поскольку, несмотря на установление функциональной определённости отдельных отделов человеческого мозга, значительная его часть может быть условно охарактеризована «неразмеченной». Однако прорыв в области изучения физиологических основ мышления человека, его высшей нервной деятельности связан с работами А. Гуда, П. Брока, С. Рамон-и-Кахаля, К. Гольджи, создавших нейронную теорию нервной системы. Их исследование было продолжено в работах Г. Бергеля, И . П. Павлова, У. П енфилда, Н. П. Бехтеревой и многих других учёных. В итоге была сформирована концепция, согласно которой мышление построено на основе электромагнитного, химического или смешанного перемещения ионов между синапсами, представляющими точки контактного взаимодействия нервных клеток (нейронов) головного и спинного мозга центральной нервной системы. Каждая нервная клетка (нейрон) способна развивать генерировать свой собственный сигнал, при этом последний может относиться только к одной форме перемещения ионов. Н ейрон способен суммировать входные сигналы и вырабатывать исходящий сигнал стандартной величины в момент, когда величина суммы входящих импульсов превысит определённый порог.
В 1943 г. У. МакКаллох и У. Питтс в совместной статье обосновали с помощью терминологии логики высказываний (пропозициональной логики) сетевой характер обработки информации в любых системах, предложили термины «искусственный нейрон» и «искусственная нейронная сеть». Под первым понималась нелинейная функция, способная изменять свой значение в зависимости от входящих сигналов. Объединение большого количества искусственных нейронов формирует искусственную нейронную
■ вычислительные возможности компьютеров того времени не позволяли производить обучение сети за достаточно короткое время, эта задача в ряде случаев могла решаться за счёт распараллеливания процессов вычисления, однако далеко не во всех случаях это было возможно. Для примера: наиболее производительный компьютер по состоянию на 1970 г., американский CDC 7600 имел производительность в 10 мегафлопсов (флопс -единица измерения производительности компьютеров, показывающая количество выполняемых компьютером операций с плавающей запятой), наиболее мощный современный компьютер, Summit имеет мощность 122,3 петафлопса, а к 2023 г. ожидается появление компьютеров, чья производительность будет оцениваться с прис та в ко й «экз а »;
2 . Возможность накопления и обработки больших данных, на основе которых осуществляется обучения искусственных нейронных сетей. В данном контексте невозможно избежать очередного сопоставления искусственного интеллекта с развитием человеческого мышления: аналогично процессу обучения человека, чем больше точной информации доступно, тем точнее компьютерная система будет принимать решения. С развитием компьютерной техники человечество одновременно стало генерировать гораздо больший объём информации, чем это было возможно в прошлом и получило действенный инструментарий по работе со значительными объёмами информации, как структурированной, так и не структурированной.
сеть, способную выполнять логические и вычислительные операции [17, рр 99-1031. в их работе была заложена синтетическая структура теории искусственного интеллекта, включающая знания из области физиологии, математической логики и зарождавшихся тогда компьютерных наук. Так, к примеру, в упомянутой работе был развит принцип, согласно которому вычислительные (в том числе моделирующие) операции любой степени сложности могут быть произведены при помощи примитивных компонентов, если
К 1970 году ученое сообщество пришло к заключению, что прогнозы в области развития роботов были весьма оптимистичны, однако на практике достижение многих целей не представляется возможным. Искусственный разум способен решить простые, примитивные задачи, однако со сложными сценариями он не справляется.
найдены объекты, взаимные фундаментальные отношения которых могут быть выражены таковыми из абстрактной науки об операциях, и которые также должны быть подвержены адаптации к действию операционной нотации и механизмам двигателя . Предполагая, например, что фундаментальные отношения тональных звуков в науке о гармонии и музыкальной композиции восприимчивы к такому выражению и адаптации, этот двигатель может составлять сложные и научные музыкальные произведения любой
Таким образом, предпосылки к созданию виртуального разума возникли не вчера, а еще в самой древности. Однако история ИИ началась относительно недавно, а именно в середине 20-го века. В тот период резко возросло количество трудов, связанных с исследованием возможности создания машинного разума, начали активно проводить эксперименты, появились первые результаты.
История искусственного интеллекта: основные этапы
В 1956 г. под руководством Д. Маккарти в Дартмутском колледже был организован двухмесячный научный семинар, на котором присутствовали крупные американские учёные, занимавшиеся проблематикой моделирования решения логических и творческих задач посредством вычислительной техники. В работе семинара приняли участие К. Шеннон, Н. Рочестер, М. Минский, О. Селфридж, А. Ньюэлл, Х. Саймон и др. Основными результатами этого семинара стало возникновение термина «искусственный интеллект» (в качестве альтернативы также рассматривался термин «вычислительная рациональность» [6, с 56]) и оформление соответствующей междисциплинарной области знаний. На наш взгляд, именно указанное научное мероприятие в некотором роде обособило теорию и практику искусственного интеллекта от её основного источника -кибернетики. Если в последней приоритет отдавался автоматизации информационных процессов через понимание закономерностей связей индивидуальных элементов, но теория искусственного интеллекта с помощью связей индивидуальных элементов призвана решать внешние относительно этих элементов задачи. Таким образом, искусственный интеллект стал восприниматься одновременно как объект изучения и как метод (на тот момент лишь потенциальный) решения познавательных задач.
На уровне прикладной компьютерной модели эта теория У. Маккалоха и У. Питтса была реализована Ф. Розенблаттом в 1957 г. под названием «перцептрон» [20, pp- 385~4081, а первое физическое воплощение она получила в виде электронного устройства «Марк-1» тремя годами позже. Несмотря на свою простоту, данное устройство было способно под
П ервой философской предпосылкой формирования искусственного интеллекта следует считать работы Аристотеля, который впервые в истории предпринял попытку формализации операций мышления человека, сформулировал некоторые основы формальной силлогистической логики, которые многими столетиями позже будут интегрированы автоматизированные технические устройства. В истории техники есть немало примеров попыток создания машин, облегчающих отдельные мыслительные операции, как правило, вычислительного характера: считающие часы В. Шиккарда (1623), суммирующая машина Б. Паскаля (1642), арифмометр Г. Ф. Лейбница (1673), разностная машина (машина различий) Ч. Беббиджа (1822). Указанные примеры, не являясь интеллектуальными компьютерными системами, всё же послужили появлению и развитию компьютерной техники, что в свою очередь привело к возникновению такой технологии как искусственный интеллект. В настоящей статье будет предпринята попытка проанализировать, каким образом в мировоззрении человека и научно-техническом прогрессе произошли изменения, позволившие говорить с научной точки зрения о таком я в ле нии ка к ис кусс тв е нный инте лле кт.
электронной лампой Г9, с- 143-1571 (в компьютерах первого поколения логические цепи строились на базе ламп). Н ейроны как таковые не могут быть названы элементарными физическими единицами когнитивных процессов, однако их объединение уже позволяет производить мыслительные операции. И менно принцип связи достаточно большого количества простых вычислительных элементов (будь это нейроны или электронные лампы) позволяет мозгу или компьютеру обрабатывать сложные массивы информации.
количество последних достаточно велико. Сетевая (коннекционистская) модель, получившая закрепление в рассматриваемой технологии, предполагает, что интеллект -это возникающее, а не имманентное качество; «высокоуровневые задачи, например, распознавание шаблонов и установление связей между ними, проявляется автоматически в результате распространения активности по сети посредством
История ИИ в России началась еще во времена Российской империи. Уже тогда появились первые предпосылки для создания виртуального разума. Например, в 1832 году С. Н. Корсаков представил свой труд с описанием работы пяти механических устройств, которые он сам изобрел. У них было второе название: интеллектуальные машины. Они были наделены способностью механизировать некоторые направления умственного труда, а именно поиск, сравнение и классификацию.