Какие бывают виды искусственного интеллекта

0
17

Искусственный интеллект: его возможности и виды, развитие и использование

ИИ с глубоким обучением (Deep Learning)

ИИ неидеален, но с каждым днём ​​он становится всё лучше. Даже с таким «мозгом» ИИ принимает решения по многим вопросам. Лучшие кейсы с ИИ показывают технологические гиганты с огромными базами данных и страшно большими бюджетами. Но в последнее время технологии ИИ внедряет и малый бизнес: ИИ теперь доступен как услуга.

В марте 2018 года в Аризоне самоуправляемый автомобиль от Uber задавил пешехода. Суд решил, что компания Uber не виновата: виновным признали сидевшего на пассажирском сиденье запасного водителя, ответственного за мониторинг действий ИИ. Tesla Model врезался в разделительный барьер на шоссе в Калифорнии — в результате погиб водитель.

ИИ общего назначения (сильный ИИ) должен быть способен успешно выполнять любые интеллектуальные задачи, которые под силу человеку. Как и системы ИИ узкого назначения, системы общего назначения могут учиться на опыте, выявлять и прогнозировать закономерности – но у них есть возможность сделать еще один важный шаг. Они способны экстраполировать эти знания на широкий спектр задач и ситуаций, которые не могут быть решены с помощью ранее полученных данных или существующих алгоритмов.

Vanguard — одна из крупнейших в мире инвестиционных компаний, управляет $7 000 000 000 000. Проблема в том, что компания работает в строго регламентируемой отрасли, где существует сотни ограничений для рекламы. Выделиться среди других компаний крайне сложно — все пишут одно и то же.

Первое определение искусственного интеллекта (ИИ) дал один из его отцов-основателей, Марвин Минский, который описал его как «науку о том, как заставить машины делать вещи, которые требуют применения интеллекта, когда их делают люди». Суть этого определения верна и сегодня, однако современные специалисты в области вычислительных систем идут немного дальше и определяют ИИ как систему, способную воспринимать окружающую среду и предпринимать действия для максимизации шансов на успешное достижение своих целей, а также как способность этой системы интерпретировать и анализировать данные таким образом, чтобы она могла обучаться и адаптироваться по ходу дела.

В 2017 году команда Google заставила два ИИ DeepMind соревноваться друг с другом, чтобы собрать как можно больше виртуальных яблок. Как только яблоки начали уменьшаться, два ИИ стали агрессивными — лазерными лучами убивали друг друга и крали все яблоки. Чем умнее делали ИИ, тем более жадным и агрессивным он становился.

ИИ помогает врачам ставить диагнозы, находить лучшие способы лечения, предотвращать самоубийства, разрабатывать лекарства и вакцины, делать бионические протезы и проводить хирургические операции. С ИИ можно вовремя обнаруживать рак, сердечные приступы или избыток сахара в крови.

IBM экономит более $100 000 000 в год благодаря ИИ в своем отделе кадров. Их системы анализируют сотрудников по сотням параметров и пишут менеджеру о тех, кто готов к повышению. Если же сотрудник косячит и одной ногой уже на пути к увольнению, система также это улавливает. Менеджеры могут вмешаться на ранней стадии, чтобы помочь сотруднику вернуться в нужное русло. Другой ИИ от IBM общается с сотрудниками и помогает им найти новые роли в компании, достигнуть более крупных карьерных целей — как коуч.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая улучшает качество изображений

Как работает ИИ с машинным обучением (ML)?

В машину закладывается алгоритм на основе ИИ — он сканирует этикетку, понимает, что это, допустим, яблоко и кладёт фрукт сортировочными рычагами в нужный лоток. Всё, что нужно — правильная маркировка фруктов и система сканирования. Тут в основе работы будут правила, которые жестко закодированы людьми. Обойтись можно простым ИИ без машинного обучения либо вовсе разработать всё без ИИ — взять обычную программу с жёстким алгоритмом.

Yandex SpeechKit — сервис распознавания и синтеза речи. Многие знают его по голосовому помощнику «Алиса». Но его применение гораздо шире: SpeechKit может общаться с клиентам, записывать их на услугу и совершать холодные звонки. Делает это настолько естественно, что только 4% клиентов понимают, что общаются с роботом.

Бизнес расширился — теперь Игорь работает со многими поставщиками, и не все они маркируют фрукты. Нужен более умный ИИ, который определит фрукт без штрихкода. Чтобы создать модель ML, человеку нужно запрограммировать характеристики каждого фрукта — размеры, цвета, формы и т. д.

ANI, также известный как слабый ИИ, существует уже сегодня. Хотя задачи, которые может выполнять слабый ИИ, могут выполняться с помощью очень сложных алгоритмов и нейронных сетей, они тем не менее остаются единичными и ориентированными на достижение цели. Распознавание лиц, поиск в интернете и самодвижущиеся автомобили – все это примеры ИИ узкого назначения. Его относят к категории слабых не потому, что ему не хватает масштаба и мощности, а потому, что ему еще далеко до наличия человеческих компонентов, которые мы приписываем настоящему интеллекту.

Джон Маккарти — чудаковатый учёный-компьютерщик из Стэнфорда — ввёл термин «искусственный интеллект» в 1956 году. В этот исторический год вместе с горсткой других учёных-математиков он провёл летний семинар на тему ИИ в Дартмутском колледже. Учёные с этой конференции в том же году создали первый ИИ в мире — компьютерную программу Logic Theorist. Она могла доказывать определенные математические теоремы. Так началась история искусственного интеллекта.

«К 2030 году… родители будут привлекать опытных ботов, чтобы помочь детям с домашним заданием и стимулировать разговоры за ужином. На работе боты будут проводить собрания. Бот-доверенное лицо будет считаться важным для психологического благополучия, и мы будем все чаще обращаться к таким товарищам за советом, начиная от того, что надеть, и заканчивая тем, на ком жениться».

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь