Содержание статьи
Виды нейронных сетей
От теории к практике
Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.
В современном мире нейронные сети стали настоящим флагманом в области искусственного интеллекта, предоставляя невероятные возможности для обработки данных и решения сложных задач. Уникальность каждого типа нейронных сетей позволяет оптимизировать их для конкретных целей. Давайте пройдемся по ключевым видам нейронных сетей, которые активно формируют ландшафт современных технологических решений.
Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.
Даже при всем желании рассказать про все существующие виды нейросетей невозможно. Может быть, пока вы читаете этот материал, где-то уже придумали еще один алгоритм. Однако существует три наиболее чаще встречающихся разновидности нейросетей, на которых есть смысл остановиться подробно.
Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?
Конечно, попытки создания обособленных нейронных сетей уже есть, но их полной автономии добиться не удалось. Может быть, она и не нужна: это откроет путь в будущее, где роботам будут не нужны люди. А это уже что-то на грани фантастики. В реальности предназначение ИИ заключается в том, чтобы помогать человеку — и технологии развиваются именно в этом направлении.
Сегодняшний мир нейронных сетей предлагает удивительное разнообразие инструментов для решения самых разнообразных задач. Выбор конкретного типа сети зависит от природы данных и целей, которые вы хотите достичь. Под воздействием постоянных исследований в области глубокого обучения, нейронные сети становятся мощным и универсальным инструментом для решения сложных задач в различных областях. Взгляните в будущее технологий – оно принадлежит нейронным сетям.
Однако без помощи человека нейросеть не справится ни с одной задачей. Алгоритм необходимо верно подобрать под конкретную ситуацию, обучить его, выявить ошибки, а затем доработать. Не существует и нейросетей, которые могут одновременно хорошо выполнять различные категории задач и самостоятельно определять, что нужно делать.
Комбинированные нейросети (свёрточные + рекуррентные)
Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному — ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.
Нейросети можно категоризировать по-разному — например, на однослойные и многослойные, на нейросети прямого распространения и рекуррентные, на радиально-базисные, а также по типу обучения: с учителем или без, аналоговые, двоичные или образные, с фиксированными или динамическими связями. Ультимативной классификации не существует. Инфографика, созданная в 2016 году, демонстрирует почему.
1. Перцептрон: Основа Искусственного Интеллекта
Знакомьтесь с перцептроном — фундаментальной формой нейронных сетей, созданным в 1957 году Фрэнком Розенблаттом. Этот инструмент представляет собой одиночный или множественный набор нейронов, способных принимать решения, основанные на входных данных. Важно понимать, что перцептрон стал отправной точкой для развития более сложных и эффективных структур.
В середине XX века двое ученых, Уоррен Маккаллок и Уолтер Питтс, предположили, что нейроны в мозгу человека, если говорить просто, оперируют двоичными числами, как и компьютеры. Они создали конструкцию электронных аналогов нейронов и предсказали, что такая сеть сможет повторять работу мозга: обучаться, распознавать текст и изображения и многое другое. Их исследование, опубликованное в 1943 году, легло в основу работы «Логическое исчисление идей, относящихся к нервной активности». Ее можно считать точкой отсчета существования нейросетей — математических моделей, построенных по принципу организации и функционирования биологических нейронных сетей — нервных клеток живого организма.
Если алгоритм имеет структуру нейронной сети, он способен анализировать данные, запоминать результат и предсказывать исходы различных экспериментов (здесь экспериментом может быть любое действие, связанное с обработкой данных). о строению нейросети действительно напоминают человеческий мозг и работают по тем же принципам, что и он. Но напрямую сравнивать их бессмысленно: мозг устроен значительно сложнее.
Искусственная нейронная сеть — это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.
Все это довольно очевидные примеры, при этом каждый день многие из нас работают с нейросетями и даже не догадываются об этом. В Яндекс.Переводчик давно встроена нейросеть, которая обучается и совершенствует качество перевода, а в каждом современном смартфоне сейчас есть алгоритм, который дорабатывает изображение, полученное с камеры, и улучшает его. С помощью нейросетей также делают прогнозы погоды, распознают объекты на фотографиях и раскрашивают старые фильмы.
Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 — первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:
Нейросети постоянно самообучаются. Благодаря этому процессу:
Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.
5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.
7. Генеративные Сети (GAN): Искусство Творения в Мире Алгоритмов
Генеративные сети (GAN) представляют собой уникальный дуэт — генератор и дискриминатор, конкурирующие за создание и оценку подлинности данных. Используемые для генерации изображений, видео и других контентов, GAN стали невероятно важными в креативных сферах.
3. Рекуррентные Нейронные Сети (RNN): Магия Последовательностей
RNN созданы для работы с последовательными данными, такими как временные ряды или текст. Их уникальность в циклических связях, которые позволяют учитывать предыдущие входы. Такие сети прекрасно справляются с задачами обработки естественного языка и машинного перевода.
6. Автокодировщики: Искусство Сжатия и Извлечения
Автокодировщики – это нейронные сети, обученные воспроизводить входные данные. Эффективность их применения проявляется в областях, таких как рекомендательные системы и уменьшение размерности данных, где важна точность воспроизведения.
1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский — одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.
Всего за пару десятков лет искусственный интеллект, кажется, научился всему: от генерации текста и изображений до прогноза погоды, вождения автомобилей и обнаружения патологий на рентгеновских снимках. Тем не менее, в отличие от нашего мозга, созданный по его подобию ИИ неуниверсален — для решения конкретных задач нейросети постоянно изменяют и совершенствуют. Рассказываем, как они устроены, чем отличаются друг от друга и почему ни одна нейросеть не способна обойтись без человека.
В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными: