Содержание статьи
Преимущества и недостатки искусственного интеллекта
Готовые решения упрощают внедрение ИИ на предприятии
Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.
Если Вы впервые задействуете искусственный интеллект для создания приложений, рекомендуется начинать с малого. Создав относительно простой проект наподобие крестиков-ноликов, Вы освоите основы искусственного интеллекта. Учеба на практике является отличным способом развития любых навыков, и искусственный интеллект здесь не исключение. Успешно выполнив несколько небольших проектов, Вы поймете, что возможности искусственного интеллекта поистине безграничны.
Наглядным примером этого являются данные, которые извлекаются с производственных предприятий, на которых подключенные элементы обеспечивают постоянный поток данных о состоянии машин, производстве, функциональности, температуре и т. д. к центральному ядру. Этот огромный объем данных, полученных в процессе производства, должен быть проанализирован для достижения постоянного улучшения и принятия адекватных решений, однако объем этих данных означает, что человек должен тратить большое количество времени (дней) на анализ и прослеживаемость.
науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.
2. Отсутствие квалифицированных специалистов.
Еще одно препятствие, которое часто возникает на уровне предприятия при внедрении ИИ, – это нехватка профилей с навыками и опытом в реализации этого типа. В этих случаях очень важно иметь профессионалов, которые уже работали над проектами такого же размера.
Некоторые считают, что у искусственного интеллекта (ИИ) есть риски. Особенно, если потенциал ИИ исследуется и не ограничивается воспроизведением человеческих задач. Такие авторы, как Стивен Хокинг или Билл Гейтс, и различные исследователи выразили обеспокоенность по поводу ИИ.
Чтобы повысить точность этих моделей, инженер будет передавать данные в модели и настраивать параметры до тех пор, пока они не достигнут заданного порога. Эти потребности в обучении, измеряемые сложностью модели, растут в геометрической прогрессии с каждым годом.
Глубокое обучение необходимо для выполнения гораздо более сложных функций, позволяющих анализировать широкий спектр факторов одновременно. Например, глубокое обучение используется для контекстуализации информации, получаемой датчиками, используемыми в автономных автомобилях: расстояние до объектов, скорость, с которой они движутся, прогнозы, основанные на совершаемом ими движении и т. д. Эта информация используется, в частности, для того, чтобы решить, как и когда менять полосу движения.
Как работает ИИ?
Однако другие источники идут дальше и определяют ИИ как компьютерную систему, которая используется для решения сложных задач, которые превышают возможности человеческого мозга.
В этом смысле ИИ использует возможности машин для решения сложных проблем, недоступных человеческому разуму.
ИИ все шире используется в производственных операциях, что привело к появлению нового термина — адаптивный интеллект. Адаптивные интеллектуальные приложения помогают принимать более эффективные бизнес-решения за счет использования внутренних и оперативных внешних данных в реальном времени и высокомасштабируемой инфраструктуры.
ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.
Использование чат-ботов для общения с покупателями. Чат-боты используют лингвистическую обработку, чтобы анализировать вопросы покупателей и предоставлять ответы и информацию. Чат-боты умеют обучаться и со временем начинают приносить все большие преимущества.
1. Доступность данных.
Часто, данные представлены в изоляции в компаниях или непоследовательно и низкое качество, которое представляет собой серьезную проблему для компаний, стремящихся создавать ценности из ИИ. Чтобы преодолеть этот барьер, жизненно важно с самого начала разработать четкую стратегию, чтобы иметь возможность извлекать данные организованным и последовательным образом.
ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям