Как выглядят нейросети

0
13

Как выглядят нейросети

Нейросеть — аналог мозга?

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

Таргетологи «Тинькофф Журнала» сгенерировали десять картинок для баннерной рекламы. Основная идея эксперимента — быстро проводить A/B-тестирование без привлечения дизайнеров. Все арты отличаются по стилю и содержанию. У дизайнера на отрисовку уйдет несколько дней, нейросеть справилась за несколько часов.
Свой художник в кармане: 8 нейросетей для генерации картинок

Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.

В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.

Главная особенность нейросетей в том, что они умеют принимать решения на основе прошлого опыта. Обычно для решения задач программы используют заданный алгоритм — точную последовательность операций, которая ведет к определенному результату. Все возможные варианты событий и решений уже прописаны в коде.

Искусственный интеллект, машинное обучение и нейросети — это не синонимы, но тесно связанные понятия. Искусственный интеллект — это область знаний, которая изучает и разрабатывает системы, имитирующие поведение человека. Она включает данные, программы и технологии. Машинное обучение — это способ формирования искусственного интеллекта. Нейросеть — это один из методов машинного обучения, в основе которого лежит математическая модель, имитирующая мозг.

Где используют нейросети

Автоматизировать покупку цифровой рекламы. На мировом рынке представлены несколько рекламных сервисов на основе нейронных сетей. Например Albert, Publicis COSMOS, LoopMe. Платформы позволяют оптимизировать закупку объявлений, сегментировать ЦА, анализировать поведенческие факторы и проводить A/B-тестирования . Крупный поставщик фруктов Dole использовал платформу Albert для запуска рекламной кампании. Нейросеть выявила, что видеоформат и реклама на мобильных устройствах эффективнее, и позволила компании таргетироваться более локально.

ЧИТАТЬ ТАКЖЕ:  Что будет после нейросетей

Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.

Анализировать и планировать промоактивности. «Магнит» проверяет правильность выкладки в розничных точках. Искусственный интеллект анализирует наличие товаров на полке и контролирует остатки на складах. Автоматизация сокращает время на проверку почти в 4 раза. Также компания использует нейросети для анализа и планирования промо-мероприятий . Алгоритмы подбирают ассортимент, глубину скидки и тип акции.

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.

В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь