Содержание статьи
Как отличить фото людей, которые сгенерировала нейросеть
Нейросеть — аналог мозга?
Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.
Нейросети состоят из «нейронов» (простых процессоров). Когда нейросеть обрабатывает какую-то информацию, сигналы проходят через нейроны и связи между ними. По мере обучения эти связи меняются, становятся более сильными или слабыми, что позволяет сети находить нужные решения.
Форма лица. Нейросетевым лицам присуща симметричность, которую редко встретишь в жизни, например глаза на одинаковом расстоянии от центра лица. Либо, наоборот, неестественная асимметричность, например одно ухо гораздо больше второго, глаза разного цвета и размера.
В эпоху стремительного развития технологий нейросети занимают особое место, переворачивая представления о возможностях искусственного интеллекта. Взглянем на то, как работают эти удивительные системы и какие невероятные задачи они способны решить. Погружаемся в мир нейросетей и их потенциала!
Нейросети — мощный инструмент, который уже сегодня преобразует множество сфер жизни. Сети продолжают развиваться и обещают еще более захватывающие и значимые результаты. От медицинской диагностики до творчества и интеллектуальных систем управления — нейросети открывают перед нами новые горизонты и предоставляют небывалые возможности.
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.
В настоящее время многие пользователи — как обладатели домашних компьютеров, так и разработчики программного обеспечения, администраторы серверных систем и прочие представители корпоративного сектора — всё больше используют операционные системы, основанные на ядре Linux либо задумываются о переходе на эти системы. Причин тому достаточно: такие особенности, как отличная производительность, возможность тонкой настройки, защищенность данных, бесплатность многих продуктов и недавно проявившаяся политическая составляющая делают эту ОС хорошим выбором для использования в самых разнообразных компьютерных системах. Одна из отличительных особенностей Linux — поддержка «из коробки» разнообразных файловых систем, в том числе традиционных и специализированных. Её ядро содержит набор заранее предустановленных файловых систем, каждая из которых предлагает свои функции для организации, хранения и управления данными и регулирует доступ к ним исходя из предъявляемых требований безопасности. Для любого дискового раздела можно выбрать свою систему, ориентируясь на приоритетные потребности пользователя — такие, как быстродействие, гарантированная сохранность информации, повышенная производительность.
Ошибки и артефакты. У StyleGAN есть несколько мест, где нейросеть обычно ошибается. Например, это аксессуары: ИИ любит генерировать людей в очках и серьгах, но нередко на них проявляются артефакты, которые выглядят как характерные разноцветные кляксы.
Три задачи нейронных сетей
Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.
Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.
В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.
С позиций сегодняшнего дня представляется, что нейросети вряд ли полностью заменят человека. Мы ожидаем от них помощи и новых решений задач, стоящих перед человечеством в целом и в конкретных сферах в частности. В будущем взаимодействие человека и нейросетей позволит решать многие глобальные проблемы и создавать условия для существования справедливого и процветающего общества.
Сервисы работают по-разному . Например, в This Person Does Not Exist нельзя задать параметры изображения: после каждого обновления страницы пользователь просто получает рандомно сгенерированный новый снимок. В Bored Humans тоже нет настроек. А в Random Face Generator можно задать только пол и возраст сгенерированного на фото человека.
Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.
Еще одна особенность нейросетевых фото — абстрактный или слишком размытый фон: так искусственный интеллект избегает «ошибок второго плана». А если какие-то детали и появляются на фото, они сразу выдают нейросеть. Например, люди на фоне могут быть плохо прорисоваными, дома — косыми, лес — с искажениями.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.
Может ли нейросеть заменить человека
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Это действительно проблема. В 2022 году ученые лондонского университета Роял Холлоуэй провели исследование и выяснили, что люди уже часто не могут определить, где реальное фото, а где нет. Другое исследование университетов Беркли и Ланкастера удивило еще больше: после того как участникам эксперимента дали советы по выявлению фейка, 41% испытуемых все равно не справились с заданием.
Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.
Существуют различные типы нейронных сетей, такие как сверточные (CNN), рекуррентные (RNN), трансформеры и ряд других. Сверточные нейросети находят применение для обработки изображений и видео, рекуррентные — используются для анализа последовательностей данных, таких как тексты или временные ряды, а трансформеры предназначены в основном для обработки естественных языков и последовательностей данных.
В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.
Кроме того, есть входной и выходной слои. Входной принимает информацию и преобразовывает ее, например переводит картинку в матрицу из чисел. Выходной обрабатывает результат и представляет его в понятном человеку виде. Например, результат 0,77827273 он представит как «с точностью в 78% это такой-то предмет».