Как устроена нейросеть простым языком

0
18

Как работают нейросети и на что они способны в 2024 году

Что умеют делать нейронные сети

Нейронные сети используются для решения сложных задач, которые требуют большого объема данных и высокой точности. Они могут быть использованы для распознавания образов, анализа текстовых данных или прогнозирования поведения рынка, а также могут применяться для создания новых продуктов и услуг, таких как персональные помощники или системы автоматического управления транспортом.

Нейросети — мощный инструмент, который уже сегодня преобразует множество сфер жизни. Сети продолжают развиваться и обещают еще более захватывающие и значимые результаты. От медицинской диагностики до творчества и интеллектуальных систем управления — нейросети открывают перед нами новые горизонты и предоставляют небывалые возможности.

У нейросетей есть общие черты — например, наличие входного слоя, который принимает информацию на вход. Но много и различий. Для каждой из перечисленных выше задач потребуется своя нейронная сеть. У них будут различаться структуры, архитектура, типы нейронов и многое другое. Создать универсальный алгоритм невозможно, по крайней мере пока, поэтому сети отдельно оптимизируют под определенные спектры задач. Однонаправленные. Нейросети работают в одном направлении — как оригинальный перцептрон. Это значит, что у них нет «памяти», а поток информации передается только в одну сторону. Структура выходит более простой, чем в случае с рекуррентными сетями, о которых мы поговорим ниже. Но это не плохо: для решения некоторых задач простые структуры подходят лучше. Однонаправленные сети хорошо подходят для задач распознавания. Суть примерно та же, что и в случае с восприятием окружающего мира реальным мозгом. Органы чувств получают информацию и передают ее в одном направлении, та в процессе трансформируется и распознается. Мозг делает вывод: «я вижу собаку», «слышна рок-музыка», «на улице холодно». Однонаправленная модель работает по тому же принципу, но более упрощенно. Еще один вариант применения — прогнозирование. Принцип такой же: «На улице тучи — значит, пойдет дождь». Но критерии, по которым нейросети делают выводы, до конца непонятны. Рекуррентные. У этих сетей есть эффект «памяти» благодаря тому, что данные передаются в двух направлениях, а не в одном. В результате они воспринимают предыдущую полученную информацию и могут глубже ее «анализировать». Это полезно, если перед сетью стоит сложная задача вроде перевода текста. Однонаправленная нейросеть переведет каждое слово по отдельности, и получится бессвязная «каша». Рекуррентная сможет учесть контекст и перевести, например, apple tree не как «яблоко дерево», а как «яблоня». Или более сложный пример: идиома that’s a piece of cake в контексте переведется не как «это кусок торта», а как «проще простого» в зависимости от стиля текста. На это сейчас способны не все переводчики. Задачи для рекуррентной сети можно сформулировать так: это работа с большим объемом данных, которые надо разбить на более мелкие и обработать. Причем с учетом связей между друг другом. Правильно настроенная рекуррентная нейронная сеть способна отличать контекст одной ситуации от другой. Это важно, например, при создании «говорящих» ботов: вспомните, как «обижаются» голосовые помощники, если сказать им что-то грубое. Сверточные. Это отдельная категория нейронных сетей, менее закрытая, чем другие, благодаря принципиальной многослойности. Многослойными называются нейронные сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоев связи между нейронами отсутствуют. Сверточные сети используют для распознавания образов. У них особая структура слоев: часть занимается «свертыванием», преобразованием картинки, а часть — группировкой и распознаванием маленьких дискретных элементов, созданных на сверточных слоях. Таких слоев несколько. Результат — более высокая точность и качественное восприятие информации. Интересный факт: как обычные нейросети были основаны на нейронах в головном мозгу, так сверточные — на структуре зрительной коры. Это та часть мозга, которая отвечает за восприятие картинок. В ней чередуются «простые» и «сложные» клетки: первые реагируют на определенные линии и очертания, вторые — на активацию конкретных простых клеток. Так происходит процесс распознавания образов в мозгу, и примерно так же устроена сверточная нейросеть. Сверточные слои «воспринимают» отдельные элементы картинки как простые клетки — линии. Особые слои, называемые субдискретизирующими, реагируют на конкретные найденные элементы. Чем больше слоев, тем более абстрактные детали способна заметить и определить сеть. На результат работы промежуточных слоев можно посмотреть, если заглянуть в файлы нейросети. Поэтому она и считается менее закрытой. Результат больше всего напоминает карту признаков из машинного обучения.

Биологические нейронные сети. Нервная система живого существа состоит из нейронов — клеток, которые накапливают и передают информацию в виде электрических и химических импульсов. У нейронов есть аксон — основная часть клетки, и дендрит — длинный отросток на ее конце, который может достигать сантиметра в длину. Дендриты передают информацию с одной клетки на другую и работают как «провода» для нервных импульсов. С помощью специальных шипов они цепляются за другие нейроны, и так сигналы передаются по всей нервной системе. В качестве примера можно привести любое осознанное действие. Например, человек решает поднять руку: импульс сначала появляется в его мозгу, потом через сеть нейронов информация передается от одной клетки к другой. По пути она преобразуется и в конечном итоге достигает клеток в руке. Рука поднимается. Так работает большинство процессов в организме — тех, которые управляются мозгом. Но главная особенность нейронных сетей — способность обучаться. И именно она легла в основу машинных нейросетей. Первые машинные нейросети. В сороковых годах прошлого века люди впервые попытались описать сеть нейронов математически. Затем, в пятидесятых, — воссоздать ее модель с помощью кода. Получилась та самая структура, которую назвали перцептрон. На графиках и иллюстрациях ее обычно рисуют как набор кругов и прямых, их соединяющих — это и есть нейроны, образующие сетку. Перцептрон был проще современных нейросетей. Он имел всего один слой и три типа элементов: первый тип принимал информацию, второй обрабатывал и создавал ассоциативные связи, третий выдавал результат. Но даже элементарная структура уже могла обучаться и более-менее точно решать простые задачи. Например, перцептрон мог ответить, есть ли на картинке предмет, который его научили распознавать. Он был способен отвечать только на вопросы, где есть два варианта ответов: «да» и «нет». После этого развитие нейросетей замедлилось. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему. Наработки шли неторопливо, но чем больше развивалась компьютерная отрасль, тем больше интереса вызывал концепт.

Вместо того, чтобы бояться замены, человечеству стоит продолжать пользоваться нейросетями как инструментами для развития и улучшения своих способностей. Взаимодействие человека и нейросетей в конечном итоге несомненно приведёт к синергии, которая откроет людям новые возможности и позволит улучшить качество их жизни.

Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее. Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.

Особенности нейронных сетей

Предоставление информации. Когда нейросеть обучают, ей «показывают» данные, по которым необходимо что-то предсказать, и эталонные правильные ответы для них — это называется обучающей выборкой. Информации должно быть много — считается, что минимум в десять раз больше, чем количество нейронов в сети. Во время обучения нейросети показывают какую-либо информацию и говорят, что это такое, т.е. дают ответ. Все данные представляются не посредством слов, а с помощью формул и числовых коэффициентов. Например, изображению женщины соответствует «1», а изображению мужчины — «0». Это простой пример; реальные сети устроены сложнее. Преобразования. Входные нейроны получают информацию, преобразуют ее и передают дальше. Содержание информации автоматически обрабатывается с помощью формул и превращается в математические коэффициенты. Примерно как то, что мы видим глазами, превращается в нервные импульсы и передается в мозг. Он их обрабатывает, и человек понимает, что находится вокруг него. Здесь принцип похож. Обработка и выводы. У каждого нейрона есть «вес» — число внутри него, рассчитанное по особым алгоритмам. Он показывает, насколько показания нейрона значимы для всей сети. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются. В результате складывается ситуация, когда определенные нейроны реагируют, например, на силуэт человека — и выдают информацию, которая преобразуется в ответ: «Это человек». При этом человека не нужно описывать как набор математических фигур — во время обучения нейронная сеть сама задает значения весов, которые определяют его. Результат. Выводом нейронной сети становится набор формул и чисел, которые преобразуются в ответ. Например, если изображение мужчины — «0», а женщины — «1», то результат 0,67 будет означать что-то вроде «Скорее всего, это женщина». Нейросеть из-за своей структуры не может дать абсолютно точный ответ — только вероятность. И из-за закрытости и нестабильности нейронов ее показания могут различаться даже для одинаковых выборок.

ЧИТАТЬ ТАКЖЕ:  Возможен ли искусственный интеллект как техническая модель человеческого сознания

В эпоху стремительного развития технологий нейросети занимают особое место, переворачивая представления о возможностях искусственного интеллекта. Взглянем на то, как работают эти удивительные системы и какие невероятные задачи они способны решить. Погружаемся в мир нейросетей и их потенциала!

Из архитектуры и режима работы нейросети следует несколько особенностей, ключевых для понимания направления. Нейросети закрыты. Мы не можем сказать, по каким критериям программа «решает», что на картинке изображен человек или что текст является стихотворением. Все это происходит автоматически; задача разработчика — правильно описать структуру и задать формулы. Примерно так же мы не можем достоверно сказать, что именно происходит в человеческом мозгу, почему он понимает, что собака — это собака, даже если впервые видит незнакомую породу. Если у собаки не будет хвоста, она окажется бесшерстной или покрашенной в неестественный цвет, мы все равно определим ее как собаку — по ряду характеристик, которые до конца не осознаем сами. Нейроны в сетях независимы. Каждый нейрон никак не связан с процессом работы других. Да, они получают друг от друга информацию, но их внутренняя деятельность не зависит от других элементов. Поэтому даже если один нейрон выйдет из строя, другой продолжит работать — это важно в вопросе отказоустойчивости. Подобная устойчивость свойственна и биологическим нейронным сетям, которые продолжают работать, даже если оказываются повреждены. Но у независимости есть и недостаток: из-за нее решения оказываются многоступенчатыми и порой хаотичными, их сложно предсказать и повлиять на них. Нейросети очень гибкие. Так как нейроны сами подбирают критерии и не зависят друг от друга, нейросети более гибкие, чем другие модели машинного обучения. Их архитектура унаследовала важные свойства биологической нервной системы: способность самообучаться и приспосабливаться к новым данным, возможность игнорировать «шумы» и неважные детали входной информации. Как живой человек сможет различить знакомого в толпе, так нейросеть можно научить выделять нужное и отбрасывать ненужное. Гибкость проявляется не только в этом. Нейросети способны решать широкий спектр задач, и их можно адаптировать практически под любые обстоятельства. Нейросети приблизительны. Мы уже говорили: любой результат, выданный нейронной сетью, приблизителен и неточен. Например, сеть, которая распознает картинки, может сказать «Здесь изображена корова» только с определенной вероятностью. И эта вероятность всегда будет меньше единицы, то есть ниже ста процентов. Более того: если два раза показать нейросети одну и ту же картинку, она может выдать разные вероятности в качестве ответа. Различаться они, конечно, будут на сотые и тысячные доли, но это все же неодинаковый, недетерминированный результат. Нейросети могут ошибаться. Любой искусственный интеллект уступает человеческому. Это происходит из-за того, что мощности нашего мозга до сих пор невозможно повторить. В теле человека 86 миллиардов нейронов, и еще не создана сеть, которая хотя бы немного приблизилась к этому числу. В современных нейросетях содержится примерно 10 миллиардов нейронов. Даже при наличии продвинутых формул искусственная нейросеть все равно остается упрощенной моделью — например, в ней нет понятия силы импульса, которое есть в биологических нервах. У биологических нейронных сетей, конечно, тоже бывают ошибки. Но для нейросетей они проявляются более ярко за счет их упрощенной структуры. Читайте также: Искусственный интеллект против сценаристов: как нейросети создают истории

Нейросети — математические модели и их программное воплощение, основанные на строении человеческой нервной системы. Самую простую нейронную сеть, перцептрон (модель восприятия информации мозгом), вы сможете легко самостоятельно написать и запустить на своем компьютере, не используя сторонние мощности и дополнительные устройства. Пройдите наш тест и узнайте, какой контент подготовил искусственный интеллект, а какой — реальный человек. Чтобы лучше понять, что это такое, попробуем сначала разобраться, как работают биологические нейронные сети — те, что находятся внутри нашего организма. Именно они стали прообразом для машинных нейронных сетей.

В настоящее время многие пользователи — как обладатели домашних компьютеров, так и разработчики программного обеспечения, администраторы серверных систем и прочие представители корпоративного сектора — всё больше используют операционные системы, основанные на ядре Linux либо задумываются о переходе на эти системы. Причин тому достаточно: такие особенности, как отличная производительность, возможность тонкой настройки, защищенность данных, бесплатность многих продуктов и недавно проявившаяся политическая составляющая делают эту ОС хорошим выбором для использования в самых разнообразных компьютерных системах. Одна из отличительных особенностей Linux — поддержка «из коробки» разнообразных файловых систем, в том числе традиционных и специализированных. Её ядро содержит набор заранее предустановленных файловых систем, каждая из которых предлагает свои функции для организации, хранения и управления данными и регулирует доступ к ним исходя из предъявляемых требований безопасности. Для любого дискового раздела можно выбрать свою систему, ориентируясь на приоритетные потребности пользователя — такие, как быстродействие, гарантированная сохранность информации, повышенная производительность.

Структуру нейрона воссоздают при помощи кода. В качестве «аксона» используется ячейка, которая хранит в себе ограниченный диапазон значений. Информация о как бы «нервных импульсах» хранится в виде математических формул и чисел. Связи между нейронами тоже реализованы программно. Один из них передает другому на вход какую-либо вычисленную информацию, тот получает ее, обрабатывает, и затем передает результат уже своих вычислений дальше. Таким образом, информация распространяется по сети, коэффициенты внутри нейронов меняются — происходит процесс обучения.

Существует три основных проблемы работы с сетями — это явления забывчивости и переобучения, а также непредсказуемость. В биологических нейронных сетях они тоже есть, но мы их корректируем. В искусственных нейросетях аналогично применяются методы корректировки, но это сложнее и не всегда может быть эффективно. Забывчивость. Представьте, что вы попали сразу в несколько незнакомых ситуаций, опыта для которых ранее не было. Скорее всего, вам будет тяжело эффективно работать. Даже простые, но отличающиеся действия будут вызывать стресс, вы будете допускать больше ошибок. В теории нейронных сетей это называется забывчивостью: программы плохо реагируют на большое разнообразие ситуаций. Если обстоятельства все время меняются, нейросеть будет пытаться подстроиться под каждое из них, и в результате точность решений упадет. Но если человек еще может сориентироваться в незнакомой обстановке, то программе это сделать сложнее, ведь она — «вещь в себе», лишенная нейропластичности. Переобучение. Это явление, когда модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к примерам оттуда, вместо того, чтобы учиться классифицировать что-то другое, не участвующее в обучении. Если вы когда-нибудь смотрели на автомобиль и видели, что фары похожи на глаза, а решетка радиатора — на рот, вы понимаете, как это работает. Нейросеть точно так же начинает путаться. Но ресурсов человеческого мозга хватает, чтобы понять, что машина — не настоящее лицо. Программа понять это не может и в подобной ситуации способна действительно выдать результат, что на картинке изображен человек. Еще один пример переобучения можно привести для сетей, которые создают что-то новое, например стиль. Вы, наверное, замечали, что у реальных художников и писателей есть свои характерные приемы, а их произведения со временем становятся все более похожими друг на друга. Это тоже пример переобучения — и генерирующие контент нейросети также ему подвержены. Непредсказуемость. Это прямое следствие закрытости и автономности нейронов. Сложно предугадать результат работы нейросети, будет ли она корректно работать в решении той или иной задачи. И если с предыдущими ошибками можно бороться благодаря правильным алгоритмам обучения, то непредсказуемость не пропадает. Это не стандартная программа, которая выдает известный результат для каждой ситуации. С непредсказуемостью тоже борются: точность можно повысить, если использовать подходящую архитектуру. Не обязательно более сложную — с некоторыми задачами хорошо справляются, наоборот, более простые сети. Но это дополнительно усложняет работу над нейросетями, особенно когда результат работы критичен.

Нейросети состоят из «нейронов» (простых процессоров). Когда нейросеть обрабатывает какую-то информацию, сигналы проходят через нейроны и связи между ними. По мере обучения эти связи меняются, становятся более сильными или слабыми, что позволяет сети находить нужные решения.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь