Содержание статьи
Как создать нейросеть с помощью chatGPT
Запрос № 5 к chatGPT:
Сделай код запуска этой модели в цикле с разными размерами batch_size (32, 64, 128), выведи график точности по каждому запуску. Ответ chatGPT: batch_size_list = [ 32, 64, 128 ] for batch_size in batch_size_list: # Создаем более мощную модель model = Sequential() model.add(Conv2D( 32 , ( 3, 3 ), activation= ‘relu’ , input_shape=( 64, 64, 3 ))) model.add(BatchNormalization()) model.add(MaxPooling2D(( 2, 2 ))) model.add(Conv2D(64, ( 3, 3 ), activation= ‘relu’ )) model.add(BatchNormalization()) model.add(MaxPooling2D(( 2, 2 ))) model.add(Conv2D( 128 , ( 3, 3 ), activation= ‘relu’ )) model.add(BatchNormalization()) model.add(MaxPooling2D(( 2, 2 ))) model.add(Flatten()) model.add(Dropout( 0.5 )) model.add(Dense(num_classes, activation= ‘softmax’ )) model. compile (optimizer=’adam’, loss= ‘categorical_crossentropy’ , metrics=[ ‘accuracy’ ]) # Обучаем модель history = model.fit(X_train, y_train, epochs=10, batch_size=batch_size,
validation_data=(X_test, y_test))
# Рисуем график точности по эпохам обучения plt.plot(history.history[‘accuracy’], label= f ‘batch size : ‘ ) plt.title( ‘Model accuracy with different batch sizes’ ) plt.ylabel( ‘Accuracy’ ) plt.xlabel( ‘Epoch’ ) plt.legend(loc= ‘upper left’ ) plt.show()
Таким образом, мы получили (хоть и не с первого раза) то, что хотели (почти). Стоило добавить, что графики нужно было отрисовывать по точности на проверочной выборке.
Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.
Напиши подготовку тренировочных данных для нейронной сети по классификации изображений, для чего напиши код скачивания датасета при помощи gdown по этой ссылке и код разархивации датасета из zip-формата в директорию ‘content/cars’. Датасет не поделен на train и test. Он состоит из 10 папок (название каждой соответствует названию категории), каждый файл необходимо открыть при помощи Image.open, не используй генератор. Добавь в код масштабирование данных и приведи y_train к формату one hot encoding. Используй LabelEncoder для кодирования строковых меток в целые числа. Определи список названий классов и количество классов. Создай простую keras-модель на получившихся данных. Ответ chatGPT: import os import gdown import zipfile from PIL import Image from sklearn.preprocessing import LabelEncoder from sklearn.utils import shuffle from sklearn.model_selection import train_test_split import numpy as np from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D # Скачиваем датасет url = ‘ https://storage.yandexcloud.net/aiueducation/marketing/datasets/reality.zip' ; gdown.download(url, ‘reality.zip’, quiet= False ) # Распаковываем набор данных with zipfile.ZipFile( «reality.zip»,»r» ) as zip_ref: zip_ref.extractall( «content/cars» ) # Загружаем изображения и ярлыки X = [] y = [] classes = os.listdir( «content/cars» ) for i, class_name in enumerate ( classes ): for image_name in os.listdir( «content/cars/» + class_name): image = Image. open ( «content/cars/» + class_name + «/» + image_name) image = image.resize(( 64, 64 )) X.append(np.array(image)) y.append(class_name) # Масштабируем данные X = np.array(X) / 255.0 # Кодируем ярлыки label_encoder = LabelEncoder() y = label_encoder.fit_transform(y) # Приводим ярлыки к формату One-hot encoding num_classes = len(np.unique(y)) y = to_categorical(y, num_classes) # Перемешиваем данные X, y = shuffle(X, y) # Делим набор данных на тренировочную и тестовую выборки X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Создаем простую модель keras model = Sequential() model.add(Conv2D( 32 , ( 3, 3 ), activation= ‘relu’ , input_shape=( 64, 64, 3 ))) model.add(MaxPooling2D(( 2, 2 ))) model.add(Flatten()) model.add(Dense(num_classes, activation= ‘softmax’ )) model. compile (optimizer= ‘adam’ , loss= ‘categorical_crossentropy’ ,
metrics=[ ‘accuracy’ ])
Еще есть, например, метод обратного распространения ошибки — градиентный алгоритм для многослойных нейросетей. Сигналы ошибки, рассчитанные с помощью градиента, распространяются от выхода нейронной сети к входу, то есть идут не в прямом, а в обратном направлении.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
Процесс тренировки
Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:
Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.
Теперь напиши, как дополнить этот код, чтобы запустить обучение модели на 10 эпохах, построй график точности по эпохам. Ответ chatGPT: import matplotlib.pyplot as plt # Обучаем модель history = model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test)) # Рисуем график точности по эпохам обучения plt.plot(history.history[ ‘accuracy’ ]) plt.plot(history.history[ ‘val_accuracy’ ]) plt.title( ‘Model accuracy’ ) plt.ylabel( ‘Accuracy’ ) plt.xlabel( ‘Epoch’ ) plt.legend([ ‘Train’ , ‘Test’ ], loc= ‘upper left’ ) plt.show()
Текстовый комментарий chatGPT: «Добавив этот код, мы запускаем обучение модели на 10 эпохах. Мы сохраняем результат обучения в переменной history, чтобы построить график точности модели по эпохам. Мы используем plt.plot() для отображения истории обучения из history.history[‘accuracy’] (точность на обучающем наборе) и history.history[‘val_accuracy’] (точность на тестовом наборе). И далее добавляем легенду и отображаем график».
Это слишком простая модель. Создай более мощную модель, код запуска обучения, график точности, проверь в цикле различные batch_size (32, 64, 128). Ответ chatGPT: from keras.layers import Dropout, BatchNormalization # Создаем более мощную модель model = Sequential() model.add(Conv2D(32, (3, 3), activation= ‘relu’ , input_shape=( 64, 64, 3 ))) model.add(BatchNormalization()) model.add(MaxPooling2D(( 2, 2 ))) model.add(Conv2D( 64 , ( 3, 3 ), activation= ‘relu’ )) model.add(BatchNormalization()) model.add(MaxPooling2D(( 2, 2 ))) model.add(Conv2D( 128 , ( 3, 3 ), activation= ‘relu’ )) model.add(BatchNormalization()) model.add(MaxPooling2D(( 2, 2 ))) model.add(Flatten()) model.add(Dropout( 0.5 )) model.add(Dense(num_classes, activation= ‘softmax ‘ )) model. compile (optimizer= ‘adam’ , loss= ‘categorical_crossentropy’ ,
metrics=[ ‘accuracy’ ]) batch_sizes = [ 32, 64, 128 ] for batch_size in batch_sizes: # Обучаем модель history = model.fit(X_train, y_train, epochs=10, batch_size=batch_size,
validation_data=(X_test, y_test)) # Рисуем график точности по эпохам обучения plt.plot(history.history[ ‘accuracy’ ]) plt.plot(history.history[ ‘val_accuracy’ ]) plt.title( f ‘Model accuracy with batch size ‘) plt.ylabel( ‘Accuracy’ ) plt.xlabel( ‘Epoch’ ) plt.legend([ ‘Train’ , ‘Test’ ], loc= ‘upper left’ ) plt.show()
Получилось не совсем то, что мы хотели: код, созданный chatGPT, не проверяет точность при разных batch_size, а дообучает модель на их разных размерах. Необходимо было более точно составить запрос.
Многие слышали о нашумевшей нейронной сети chatGPT от OpenAI, которая способна решать множество текстовых задач: отвечать на вопросы, генерировать идеи и т. д. ChatGPT успешно используется для программирования, так как умеет писать код, находить ошибки в коде, комментировать код и многое другое. Логично, что мы, как Университет искусственного интеллекта, специализируемся на искусственном интеллекте и, естественно, решили попробовать использовать chatGPT для генерации и обучения нейронных сетей и проведения экспериментов. У нас это получилось: chatGPT не только применима, но и значительно упрощает работу по генерации архитектуры нейронных сетей и проведению экспериментов. Ниже приводен пример решения задачи классификации водителей на внимательных, засыпающих, отвлекающихся на телефон и т. п. — классификация изображений на 10 классов. Типовая задача, решать ее мы будем комплексно, начиная с подготовки датасета, который необходим для обучения нейронных сетей. В нашем случае это zip-архив, который надо скачать, подготовить, превратить в обучающие выборки, нормировать и преобразовать перед тем, как подать в нейронную сеть. Часто это гораздо больший рутинный труд для разработчика, чем само обучение нейронной сети. Мы сделаем и то, и другое исключительно с помощью запросов к chatGPT — вся статья представляет собой только запросы в chatGPT, без единой строчки рукописного кода – это был важный критерий. Приводим успешные запросы и пару ошибок для примера. При работе с chatGPT важно уметь правильно задать системе запрос. Она умная и отлично понимает даже сложные комплексные запросы, но иногда человек формулирует запрос так, что системе он не понятен. Поэтому важный скил программирования с помощью chatGPT – промт-инжиниринг, умение правильно поставить задачу. Вообще работа с chatGPT похожа на работу с очень умным junior’ом, который знает всё, что только можно знать в Интернете, но некоторые задачи понимает не так, как нужно. И, повторяю, результат зависит от умения правильно поставить ему задачу. Важный момент: мы будем обсуждать машинное обучение, создание нейронных сетей, поэтому аудитория может разделиться на две части. Первая – те, кто разбирается в машинном обучении и в библиотеке Keras. Для них будут интере
сны и сами запросы к chatGPT, которые мы сформулировали, и код, который она создает. Вторая часть аудитории – это разработчики, которые не разбираются в машинном обучении и Keras. Скорее всего, им будет не совсем понятно, что происходит (что такое слои, что такое эпохи, что такое батчи), но будет интересен сам формат запросов к chatGPT и то, как мы их формулируем. Возможно, в дальнейшем вы захотите либо изучать машинное обучение, либо программировать с помощью chatGPT, и тогда вам будет полезно посмотреть, какие бывают запросы, как мы их переструктурируем в случае ошибки, даже если вы не до конца будете понимать код созданной нейронной сети на Keras. Рассказываем, как устроены наши данные и как их нужно подготовить для подачи в сеть.