Как сделать искусственный интеллект на python

0
15

Пишем нейросеть на Python с нуля

Пример расчета потерь

Проекты в области искусственного интеллекта сейчас выходят на новый уровень. Мы это можем понять по распространению техники, в основе которой они лежат: личные помощники (в том числе умные колонки), спам-фильтры, системы поимки мошенников, поисковики, рекомендательные системы и многое другое.

За это у нас отвечают методы model.add и функция Dense. Ее параметры, которые мы здесь прописали надо понимать так: слой с 10 нейронами, в который на вход передается 1 число и второй слой — 1 нейрон, получающий 10 чисел. Зададим параметры того, как нейросеть будет обучаться.

Готовить наше «восстание машин» будем на браузерной платформе Google Collab. Ее плюс в том, что все библиотеки Python там уже добавлены. Вам нужно только прописать их подключение, и можно обращаться к фреймворкам, программируя прямо в браузере. Еще один довод «за» — возможность запускать код построчно, то есть передавать интерпретатору не весь скрипт, а только ту его часть, на результатах которой вы хотите сосредоточиться. Подключаем библиотеки оператором Import:

Термин «нейронные сети» сейчас можно услышать из каждого утюга, и многие верят, будто это что-то очень сложное. На самом деле нейронные сети совсем не такие сложные, как может показаться! Мы разберемся, как они работают, реализовав одну сеть с нуля на Python.

Теперь у нас есть все нужные инструменты для обучения нейронной сети! Мы используем алгоритм оптимизации под названием стохастический градиентный спуск (stochastic gradient descent), который определит, как мы будем изменять наши веса и пороги для минимизации потерь. Фактически, он заключается в следующей формуле обновления:

∂ L ∂ w 1 = ∂ L ∂ y p r e d ∗ ∂ y p r e d ∂ h 1 ∗ ∂ h 1 ∂ w 1 ∂ L ∂ y p r e d = − 2 ( 1 − y p r e d ) = − 2 ( 1 − 0.524 ) = − 0.952 ∂ y p r e d ∂ h 1 = w 5 ∗ f ′ ( w 5 h 1 + w 6 h 2 + b 3 ) = 1 ∗ f ′ ( 0.0474 + 0.0474 + 0 ) = f ( 0.948 ) ( 1 − f ( 0.948 ) ) = 0.249 ∂ h 1 ∂ w 1 = x 1 ∗ f ′ ( w 1 x 1 + w 2 x 2 + b 1 ) = − 2 ∗ f ′ ( − 2 + ( − 1 ) + 0 ) = − 2 ∗ f ( − 3 ) ∗ ( 1 − f ( − 3 ) ) = − 0.0904 ∂ L ∂ w 1 = − 0.952 ∗ 0.249 ∗ − 0.0904 = 0.0214

Пишем код нейронной сети

Вы знали, что разработчики нейросети LaMDA в 2022 году заявили о появлении у их детища сознания? А ChatGPT стал самым быстрорастущим сервисом в истории. К слову, сам ChatGPT является примером того, как создать нейросеть на Python, потому что он написан именно на этом языке программирования.

ЧИТАТЬ ТАКЖЕ:  Как сделать запрос нейросети

Специалисты, занимающиеся технологическим прогнозированием, называют ИИ (artificial intellect) одной из четырех технологий, которые в ближайшее время приведут к формированию «нового экономического уклада» и перевернут нашу жизнь сильнее, чем она изменилась с начала 50-х годов XX века, при первой научно-технической революции.

Этот язык программирования стремительно развивается и по данным наиболее авторитетного рейтинга языков TIOBE на апрель 2023 года, является самым востребованным в мире. Не в последнюю очередь его положение связано с тем, что сообщество разработчиков глубоко усовершенствовали его, чтобы он лучше других подходил для машинного обучения и создания нейросетей.

На Python создают прикладные приложения, пишут тесты и бэкенд веб-приложений, автоматизируют задачи в системном администрировании, его используют в нейронных сетях и анализе больших данных. Язык можно изучить самостоятельно, но на это придется потратить немало времени. Если вы хотите быстро понять основы программирования на Python, обратите внимание на онлайн-курс «Библиотеки программиста». За 30 уроков (15 теоретических и 15 практических занятий) под руководством практикующих экспертов вы не только изучите основы синтаксиса, но и освоите две интегрированные среды разработки (PyCharm и Jupyter Notebook), работу со словарями, парсинг веб-страниц, создание ботов для Telegram и Instagram, тестирование кода и даже анализ данных. Чтобы процесс обучения стал более интересным и комфортным, студенты получат от нас обратную связь. Кураторы и преподаватели курса ответят на все вопросы по теме лекций и практических занятий.

Нейронная сеть может иметь любое количество слоев, и в этих слоях может быть любое количество нейронов. Основная идея остается той же: передавайте входные данные по нейронам сети, пока не получите выходные значения. Для простоты мы будем использовать сеть, показанную выше, до конца статьи.

Две эти IT-дисциплины сегодня реализуют концепцию ИИ. Задачи в этих сферах, которые на Java или других языках могут потребовать сотни строк кода, на Python решаются несколькими командами. Это происходит за счет отличного набора библиотек к Python: Keras, Scikit-learn, TensorFlow, NumPy, Pandas. Изучение языка Python не представляет никакой сложности. Дочитайте статью до конца и вы создадите свой первый ИИ, точнее, нейросеть, которая будет возводить в степень любое заданное число.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь