Содержание статьи
Что такое нейросети: как и где используются нейросети, какие виды нейросетей существуют
Смогут ли нейросети заменить людей
Дополнительное направление – повышение конверсии, улучшение пользовательского опыта и иных показателей, для которых люди не привлекаются. Например, стриминговый сервис Netflix предлагает персонализированные рекомендации на базе предпочтений пользователей, внедряет ИИ в систему автооптимизации качества контента и предупреждения проблем.
Разобрали техническую сторону функционирования нейронных сетей, перейдем к практической части. Сложные процессы и формулы остаются недоступными для пользователей: они вводят запрос, через несколько секунд получают результат. На практике все сложнее, для примера возьмем нейронку по генерации картинок:
Нейросети для бизнеса способны ставить и отслеживать выполнение задач, формировать персональные расписания и меню, проводить проверку/критику идей и давать полезные рекомендации по их эффективности. Помогают принимать решения и автоматически оценивать вероятность сделок, писать письма для email-рассылок и отвечать на них, создавать вакансии – доступных задач много. Актуальны не только для предпринимателей, существуют нейросети для дизайнеров, маркетологов, HR, авторов, программистов и других направлений.
– по направлению распространения информации можно выделить сети прямого распространения и рекуррентные. Прямые чаще применяются для распознавания образов, кластеризации и классификации информации. Они не могут перенаправлять данные и работают в одну сторону — ввели запрос и сразу получили ответ. Рекуррентные сети «гоняют» информацию туда и обратно, пока не появится конкретный результат. За счёт эффекта кратковременного запоминания они дополняют и восстанавливают информацию. Такие сети очень востребованы в прогнозировании;
Нейросети применяются для создания визуального контента – это иконки, видеоролики, изображения. Дополнительно стоит выделить написание музыки и озвучку. Есть повышение качества картинок и управление основными параметрами: раскрашивание, черно-белый, редактирование с удалением предметов, дорисовка фона, объединение нескольких фото и другое. Помимо этого, сети умеют переносить в цифровое пространство все нарисованное от руки. Например, дизайнер сделал эскиз макета сайта на бумаге, достаточно сфотографировать его и преобразовать, используя потенциал нейронки.
Готовый сайт можно легко изменять под требования проекта, реализован дружелюбный визуальный редактор с интуитивным интерфейсом. В течение 10 дней функционал платформы – бесплатный, потом можно выбрать тариф по цене от 199 рублей в месяц. При оплате за год есть скидки и домен в подарок.
На финише выводится готовое изображение, которое пользователь может сохранить. Доступны новые генерации, если результат не соответствует ожиданиям, а также возможность изменения получившегося визуала. Вместо текстовых запросов можно использовать реальные примеры, загружая собственные картинки, что помогает сети обучаться. Стоит помнить, что по одному и тому же промту выдаются разные варианты, независимо от количества генераций.
С нейросетями немного сложнее, их невозможно запрограммировать один раз и навсегда: они обучаются, самостоятельно пишут алгоритмы и инструкции, проводят сверку с ответами. Например, сеть для генерации изображений: изначально она «увидела» огромное количество картинок с подписями, чтобы научиться определять, что же на них запечатлено. Если нужно обучить нейронку распознавать текст или музыку – применяются подходящие примеры. Рассмотрим, как это работает:
Плюсы и минусы нейросетей
Разберём работу нейросетей на примере популярной Kandinsky 3.0 от Сбера. Для обучения и генерации конечного результата эта сеть перерабатывает огромное количество текстовых данных и изображений. Это позволяет ей создавать красивые картинки на основе заданных параметров. Вот в чём состоит принцип действия:
Нейросети перерабатывают терабайты данных и со временем выполняют поставленные задачи всё лучше. Раз за разом предлагая анализировать, генерировать и прогнозировать информацию по запросу, пользователь может обучить сеть выдавать нужный результат с наименьшими затратами времени.
Российский сегмент генеративного ИИ развивается темпами, существенно опережающими мировые. В 2023 году выручка крупнейших ИИ-поставщиков выросла практически на 90%, но это не предел. Участники рынка отмечают, что качество продуктов не уступает зарубежным аналогам, а государственные программы поддержки и ориентирование на импортозамещение позволяют создавать/дорабатывать то, чего не хватает клиентам. Что сейчас в тренде и на пике развития:
В запросе важны конкретика и четкие параметры, дополнительно можно использовать универсальные подсказки, знакомые каждой нейронке: «опиши пошагово», «нарисуй в стиле», «от лица маркетолога» и аналогичные. Если реализована загрузка примеров – рекомендуется прибегнуть к функции, чтобы повысить качество результата и сократить количество генераций. На старте лучше использовать бесплатные нейросети, помогающие набить руку и понять принцип формирования запросов.
Volkswagen. С 2016 года автомобильный концерн ведет сотрудничество с компанией, которая функционирует на базе ИИ. Инструментарий обеспечивает аналитику, оптимизирующую рекламные процессы и бюджет. Используются рыночные данные (конкуренты, стоимость топлива, спрос). Сотрудничество принесло хорошие плоды: продажи Volkswagen !Up увеличились примерно на 14%, других моделей – на 20% и более.
ИИ качественно выполняет проверку, улучшение и дополнение кода. Поддерживают более 50 языков программирования, некоторые сети способны писать код на базе запросов на естественном языке + автодополнение. Доступны инструменты для создателей сайтов, компьютерных программ, мобильных приложений, прочих продуктов.
Так ли это – покажет время, но уже сегодня генеративный ИИ постепенно вытесняет с рынка кадры. Например, под угрозой авторы контента для наполнения сайтов, графические дизайнеры и иллюстраторы, онлайн-консультанты (им на смену приходят чат-боты), специалисты по озвучиванию и многие другие. Второе направление – отрасли, которые можно автоматизировать, речь идет о логистике, доставке, упаковке и аналогичных направлениях.
Нейросети могут быть универсальными, например, ChatGPT и YandexGPT дают ответы на вопросы, ищут информацию, рисуют картинки, составляют бизнес-планы и решают другие задачи. В это же время Midjourney и Kandinsky ориентированы на отрисовку изображений, Codeium проверяет и дополняет код, а SteosVoice идеальна для озвучки. Помимо предназначения, классификация выполняется по типу архитектуры: