Как работать с искусственным интеллектом

0
12

14 способов, как использовать искусственный интеллект для улучшения обслуживания клиентов — часть 1

Такие алгоритмы можно научить решать задачи любой сложности?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

Эта технология принесет пользу как клиентам, так и операторам. Первые получат более качественное обслуживание, общаясь со специалистами, которые их действительно понимают и могут предоставить наилучшую помощь. Операторы, в свою очередь, будут больше удовлетворены условиями работы, их производительность повысится естественным образом.

Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.

С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.

Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.

Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.

Одним из примеров международного стандарта в области ИИ является ISO/IEC 23894, посвященный управлению рисками в системах ИИ. Целью данного стандарта является обеспечение того, чтобы алгоритмы и модели ИИ были понятны и могли быть проверены на предмет предвзятости и справедливости, что способствует укреплению доверия к системам ИИ.

Оглавление

По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.

Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.

Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

ЧИТАТЬ ТАКЖЕ:  В россии нейросеть обучили спасению людей которым стало плохо на улице

Современные чат-боты могут собирать важную информацию от клиентов колл-центра и делиться ею с сотрудниками. Главное — обучить умных ассистентов корректно распознавать намерения пользователей. В результате чат-боты с функцией «распознавания намерений» смогут расшифровать суть любого вопроса, как бы он ни был сформулирован.

Представим ситуацию: покупателю попался бракованный или сломанный товар. Он отправляет фотографию продукта, например, в чат. Программное обеспечение на базе ИИ идентифицирует модель товара по изображению. Система высылает пользователю информацию об условиях гарантии или сообщает, какие действия он может совершить, чтобы устранить неполадку самостоятельно или обратившись в сервисный центр.

Представим ситуацию: покупатель использует инструмент чат-бота или IVR, чтобы ввести данные и получить страховое предложение, но затем покидает чат. Система автоматически отслеживает это действие и высылает пользователю уведомление, предлагая пообщаться с оператором. Если клиент соглашается на звонок, информация, собранная ранее чат-ботом или IVR, автоматически отправляется сотруднику контакт-центра. Имея эти данные, оператор сохранит драгоценное время и не будет задавать повторно одни и те же вопросы.

Что такое глубокое обучение?

Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.

Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.

Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Технология искусственного интеллекта с каждым годом все лучше анализирует изображения, и функция «компьютерного зрения» — следующий шаг этой эволюции. С помощью такого интеллектуального решения пользователи могут отправлять изображения со своих смартфонов напрямую виртуальным ассистентам.

Хотя это не всегда очевидно, искусственный интеллект уже давно стал неотъемлемой частью повседневной жизни миллионов людей. Виртуальные помощники, такие как Siri и Alexa, являются яркими примерами того, как искусственный интеллект может поддерживать человека в самых разных сферах — хотя бы тем, что делает жизнь более удобной.

Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.

Еще одна из ключевых этических проблем, связанных с ИИ, — это конфиденциальность. Поскольку системы искусственного интеллекта собирают огромные объемы данных из баз данных по всему миру, необходимо обеспечить защиту личной информации и ответственное ее использование. Например, технология распознавания лиц, часто используемая в системах безопасности или на платформах социальных сетей, вызывает вопросы о получении предварительного согласия и возможном неправомерном использовании.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь