Содержание статьи
Что такое нейросеть простым языком и с примерами
Looka – нейросеть делает логотипы
Это может понадобиться при добавлении отзыва на сайт, когда изображения пользователя нет. Использование стокового изображения может быть альтернативой, однако читатель может уже видеть это изображение, что может подорвать доверие к отзыву. Фотографирование реальных людей без разрешения также не является подходящим решением.
В период с 1943 по 1950 год были опубликованы две важные научные работы. Первая, статья Уоррена Маккаллоха и Уолтера Питтса 1943 года, содержала математическую модель нейронных сетей. Затем в 1949 году канадский нейропсихолог Дональд Хебб опубликовал книгу «Организация поведения», в которой он дал исчерпывающее описание того, как искусственная нейронная система может обучаться самостоятельно.
В 1974 году Пол Вербос разработал алгоритм обратного распространения ошибок, который до сих пор используется для обучения нейросетей. Затем Джон Хопфилд в 1985 году поразил мир своей концепцией нейронной сети, способной решать конкретные задачи. Именно работы Хопфилда возродили в мировом сообществе интерес к искусственным нейронным сетям. В течение 90-х годов алгоритм обратного распространения ошибок был значительно усовершенствован, окончательно опровергнув критику Мински о неработоспособности сетей.
Биологические нейронные сети. Нервная система живого существа состоит из нейронов — клеток, которые накапливают и передают информацию в виде электрических и химических импульсов. У нейронов есть аксон — основная часть клетки, и дендрит — длинный отросток на ее конце, который может достигать сантиметра в длину. Дендриты передают информацию с одной клетки на другую и работают как «провода» для нервных импульсов. С помощью специальных шипов они цепляются за другие нейроны, и так сигналы передаются по всей нервной системе. В качестве примера можно привести любое осознанное действие. Например, человек решает поднять руку: импульс сначала появляется в его мозгу, потом через сеть нейронов информация передается от одной клетки к другой. По пути она преобразуется и в конечном итоге достигает клеток в руке. Рука поднимается. Так работает большинство процессов в организме — тех, которые управляются мозгом. Но главная особенность нейронных сетей — способность обучаться. И именно она легла в основу машинных нейросетей. Первые машинные нейросети. В сороковых годах прошлого века люди впервые попытались описать сеть нейронов математически. Затем, в пятидесятых, — воссоздать ее модель с помощью кода. Получилась та самая структура, которую назвали перцептрон. На графиках и иллюстрациях ее обычно рисуют как набор кругов и прямых, их соединяющих — это и есть нейроны, образующие сетку. Перцептрон был проще современных нейросетей. Он имел всего один слой и три типа элементов: первый тип принимал информацию, второй обрабатывал и создавал ассоциативные связи, третий выдавал результат. Но даже элементарная структура уже могла обучаться и более-менее точно решать простые задачи. Например, перцептрон мог ответить, есть ли на картинке предмет, который его научили распознавать. Он был способен отвечать только на вопросы, где есть два варианта ответов: «да» и «нет». После этого развитие нейросетей замедлилось. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему. Наработки шли неторопливо, но чем больше развивалась компьютерная отрасль, тем больше интереса вызывал концепт.
Представьте себе стадион с тысячами зрителей. Вы и ваш собеседник сидите на сцене и разговариваете, в то время как слышна громкая музыка, люди разговаривают, веселятся и поют. Ваши уши воспринимают много ненужного шума, но мозг фильтрует его и воспринимает только то, что говорит ваш собеседник. Нейронные сети могут делать нечто подобное — после обучения они могут обрабатывать только те данные, которые им нужны, игнорируя ненужный шум.
Жутковато, не правда ли? Мы можем думать, что нейросеть собирается завоевать мир, как в фантастических фильмах. Однако сейчас они все еще далеки от того, чтобы быть полноценным искусственным интеллектом из-за того, что они не умеют создавать сами себя и состоят из множества программ, не связанных друг с другом.
Особенности нейронных сетей
Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее. Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.
Важно при обучении научить сеть определять не только достаточное количество и значения признаков, чтобы выдавать хорошую точность на новых изображениях, но и не переобучиться, то есть, излишне не «подстроиться» под обучающую выборку из изображений. После завершения правильного обучения НС должна уметь определять образы (тех же классов), с которыми она не имела дела в процессе обучения.
Чтобы распознать лицо на фотографии, нейронная сеть должна пройти несколько этапов. Сначала она определяет основные контуры, затем собирает их в фигуры. После этого она определяет глаза и нос. Наконец, она объединяет все эти компоненты, чтобы сформировать портрет человека, что требует 5–6 этапов обработки.
Перцептрон не имеет скрытых слоев и может разделять данные только на две категории. Из-за своей простой структуры он был в основном заменен. Существуют также перцептроны с дополнительными скрытыми слоями, которые используются для таких задач, как идентификация голоса. Они являются более сложными.
Чаще всего обучение начинают с базовой модели, а затем стремятся ее усовершенствовать. Это делается для того, чтобы быстро получить оценку «снизу»: насколько хорошо эта архитектура справится с заданием на текущем наборе данных, чтобы, если она будет работать плохо или возникнут проблемы, можно было накопить больше данных. На этом этапе разработчики постоянно проверяют метрики, чтобы понять, насколько хорошо обучается нейронная сеть.
Нейросеть может обучаться с помощью созданных человеком алгоритмов распознавания или инструкций, а также с помощью использования существующей информации — подобно ребенку, который сначала полагается на родителей, чтобы они его научили, но со временем начинает делать собственные выводы и самостоятельно находить решения проблем.
Сервис также включает возможность создания видео с виртуальным диктором или озвучивания презентации. Вы можете выбрать различных персонажей, фон, позы, языки, голоса и жесты. Видео продолжительностью две минуты и менее доступно бесплатно по базовому тарифу. Все, что длиннее, требует подписки.
Пожалуй, самая популярная задача нейросетей – распознавание визуальных образов. Сегодня создаются сети, в которых машины способны успешно распознавать символы на бумаге и банковских картах, подписи на официальных документах, детектировать объекты и т.д. Эти функции позволяют существенно облегчить труд человека, а также повысить надежность и точность различных рабочих процессов за счет отсутствия возможности допущения ошибки из-за человеческого фактора.
Классификация нейросетей
Они используются для генерации текста, распознавания голоса и перевода. Имеют циклы, и их основной характеристикой является включение памяти. Модель передает данные вперед и назад на предыдущие этапы для достижения оптимального результата. Слои повторяются по мере циклической передачи и хранения данных, поэтому сеть может запомнить все данные. Это помогает модели понять контекст входных данных и уточнить прогнозы выходных данных.
У нейросетей есть общие черты — например, наличие входного слоя, который принимает информацию на вход. Но много и различий. Для каждой из перечисленных выше задач потребуется своя нейронная сеть. У них будут различаться структуры, архитектура, типы нейронов и многое другое. Создать универсальный алгоритм невозможно, по крайней мере пока, поэтому сети отдельно оптимизируют под определенные спектры задач. Однонаправленные. Нейросети работают в одном направлении — как оригинальный перцептрон. Это значит, что у них нет «памяти», а поток информации передается только в одну сторону. Структура выходит более простой, чем в случае с рекуррентными сетями, о которых мы поговорим ниже. Но это не плохо: для решения некоторых задач простые структуры подходят лучше. Однонаправленные сети хорошо подходят для задач распознавания. Суть примерно та же, что и в случае с восприятием окружающего мира реальным мозгом. Органы чувств получают информацию и передают ее в одном направлении, та в процессе трансформируется и распознается. Мозг делает вывод: «я вижу собаку», «слышна рок-музыка», «на улице холодно». Однонаправленная модель работает по тому же принципу, но более упрощенно. Еще один вариант применения — прогнозирование. Принцип такой же: «На улице тучи — значит, пойдет дождь». Но критерии, по которым нейросети делают выводы, до конца непонятны. Рекуррентные. У этих сетей есть эффект «памяти» благодаря тому, что данные передаются в двух направлениях, а не в одном. В результате они воспринимают предыдущую полученную информацию и могут глубже ее «анализировать». Это полезно, если перед сетью стоит сложная задача вроде перевода текста. Однонаправленная нейросеть переведет каждое слово по отдельности, и получится бессвязная «каша». Рекуррентная сможет учесть контекст и перевести, например, apple tree не как «яблоко дерево», а как «яблоня». Или более сложный пример: идиома that’s a piece of cake в контексте переведется не как «это кусок торта», а как «проще простого» в зависимости от стиля текста. На это сейчас способны не все переводчики. Задачи для рекуррентной сети можно сформулировать так: это работа с большим объемом данных, которые надо разбить на более мелкие и обработать. Причем с учетом связей между друг другом. Правильно настроенная рекуррентная нейронная сеть способна отличать контекст одной ситуации от другой. Это важно, например, при создании «говорящих» ботов: вспомните, как «обижаются» голосовые помощники, если сказать им что-то грубое. Сверточные. Это отдельная категория нейронных сетей, менее закрытая, чем другие, благодаря принципиальной многослойности. Многослойными называются нейронные сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоев связи между нейронами отсутствуют. Сверточные сети используют для распознавания образов. У них особая структура слоев: часть занимается «свертыванием», преобразованием картинки, а часть — группировкой и распознаванием маленьких дискретных элементов, созданных на сверточных слоях. Таких слоев несколько. Результат — более высокая точность и качественное восприятие информации. Интересный факт: как обычные нейросети были основаны на нейронах в головном мозгу, так сверточные — на структуре зрительной коры. Это та часть мозга, которая отвечает за восприятие картинок. В ней чередуются «простые» и «сложные» клетки: первые реагируют на определенные линии и очертания, вторые — на активацию конкретных простых клеток. Так происходит процесс распознавания образов в мозгу, и примерно так же устроена сверточная нейросеть. Сверточные слои «воспринимают» отдельные элементы картинки как простые клетки — линии. Особые слои, называемые субдискретизирующими, реагируют на конкретные найденные элементы. Чем больше слоев, тем более абстрактные детали способна заметить и определить сеть. На результат работы промежуточных слоев можно посмотреть, если заглянуть в файлы нейросети. Поэтому она и считается менее закрытой. Результат больше всего напоминает карту признаков из машинного обучения.
Сверточная НС имеет специальную архитектуру, которая позволяет ей максимально эффективно распознавать образы. Сама идея СНС основывается на чередовании сверточных и субдискретизирующих слоев (pooling), а структура является однонаправленной. СНС получила свое название от операции свертки, которая предполагает, что каждый фрагмент изображения будет умножен на ядро свертки поэлементно, при этом полученный результат должен суммироваться и записаться в похожую позицию выходного изображения. Такая архитектура обеспечивает инвариантность распознавания относительно сдвига объекта, постепенно укрупняя «окно», на которое «смотрит» свёртка, выявляя всё более и более крупные структуры и паттерны в изображении.
Эта нейронная сеть работает только на английском языке и выдает множество вариантов логотипов. Начните с ввода названия вашей компании, сферы деятельности и указания логотипов и цветов, которые вы предпочитаете. Наконец, вы можете изменить выбранный вами логотип.
ИНС (искусственные нейросети) – это математическая модель функционирования традиционных для живых организмов нейросетей, которые представляют собой сети нервных клеток. Как и в биологическом аналоге, в искусственных сетях основным элементом выступают нейроны, соединенные между собой и образующие слои, число которых может быть разным в зависимости от сложности нейросети и ее назначения (решаемых задач).
Компания Google разработала специальный сайт — teachable machine — который позволяет пользователям обучать нейросеть распознавать звуки, позы и визуальные образы. Это намного быстрее, чем если бы люди вручную собирали огромное количество данных. После того как модель обучена, ее можно загрузить на google drive в виде zip-файла, чтобы можно было вернуться и продолжить работу над ней.