С учителем и без него: как обучаются нейросети
Проекты
Обучение с подкреплением (reinforcement learning) используется в ситуациях, когда нужно обучить нейро сеть задаче с четкими результатами на выходе. Этот формат подготовки ИИ-моделей проходит через взаимодействие с окружающей средой и работает следующим образом: система получает на вход некоторые неразмеченные данные и обрабатывает их случайным образом, в ответ на что получает положительные или отрицательные отзывы, в зависимости от результатов работы. Для обучения с подкреплением не нужен полный контроль человека или заранее и полностью размеченный набор данных — важно сформулировать задачу и оценить те решения, которые предпримет система.
При этом обучение с подкреплением рассчитано не только на успешное прохождение игр. Нейросети , подготовленные к самостоятельной работе таким способом, могут в дальнейшем управлять транспортом в качестве автопилота или выступать техподдержкой, получая положительную обратную связь за каждый верно решенный запрос.
Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?
По просьбе заказчика мы разработали дополнительную функцию — возможность генерации 3D-моделей. Она позволяет пользователям загружать фотографии любого объекта с различных ракурсов и получать подробную 3D-модель, которую затем можно использовать для 3D-печати.
Современные нейросети с легкостью и за считанные секунды анализируют художественный текст, создают изображения, поддерживают живой диалог, пишут программный код и многое другое по запросу пользователя. Однако для того, чтобы эти действия правильно и быстро выполнялись, нейронная сеть проходит трудоемкое обучение, вне зависимости от размера входной задачи и количества нейронов в сети. Для результативной работы модели в будущем необходимо заранее подготовить наборы обучающих данных, рассчитать возможные отклонения от точных решений и подобрать весовые коэффициенты для каждого из нейронов.
Отсутствие контроля человека при тренировке моделей увеличивает вероятность ошибок. Самостоятельный анализ данных может привести к неверному объединению или группировке по тем признакам, которые не важны для человека. Кроме того, подобная подготовка требует большего количества времени и информации — ведь для того, чтобы без подсказок учителя сделать верные выводы, нужно проанализировать больший объем информации, чем с ними.
Главная проблема такого формата обучения — необходимость сбора и обработки огромных массивов информации на соответствующих высоких мощностях. Это длительный, дорогостоящий и технически сложный процесс, позволить себе который могут только крупные компании, не говоря уже о частных лицах. Кроме того, обучение с учителем подходит далеко не для всех типов данных. Оно предполагает, что в дальнейшем система будет работать только с информацией, аналогичной обучающему датасету, иначе эффективность ее функционирования точно предсказать невозможно.
Тренировочный набор данных для этого типа обучения важно разметить, то есть каждому примеру сопоставить результат, который модель должна получить. Для этого над входным датасетом следует предварительно поработать: учитель собирает его заранее, просматривает и размечает в понятном для обработки виде.
С подкреплением
Нейросети , прошедшие обучение без учителя, не хуже предыдущих решают задачи кластеризации. Деление большого количества данных на группы способна совершить каждая обучающаяся модель, а далее с уже первично отсортированными сведениями могут работать люди или более тонко настроенные модели. Помимо задач группировки, нейронные сети умеют определять связи в данных. Этот механизм часто используется в маркетинге: анализируя историю покупок, искусственный интеллект предполагает, какие товары и услуги дополнительно предложить этому же человеку. Детектирование аномалий — еще одна профильная задача самостоятельного машинного обучения, решаемая автокодировщиком Autoencoder.
Чтобы клиент сервиса мог быстро обучить себе нейросеть, мы внедрили в сервис умного помощника на базе ChatGPT. Мы обучили нейросеть, какие пользователи могут задавать вопросы, а также как правильно им отвечать. Таким образом, пользователь будущего сервиса получит понятную и легкодоступную инструкцию по выбору настроек и сможет быстро обучить себе нейросеть.
Все нейронные сети решают разные задачи, и поэтому тренировать их нужно тоже по-разному. В зависимости от будущего функционала, наличия ресурсов и времени выбирайте подходящий формат обучения — и спустя время получите наученную решению именно ваших задач ИИ-модель.
Обучение с учителем используется для нейросетей , которые в дальнейшем будут решать задачи классификации: получать на входной слой большой объем данных и разделять информацию по заданным категориям. Этот механизм лежит в основе разных функций: модель может в будущем специализироваться и на генерации текста или продолжении предложений (нейронная сеть LSTM), и на идентификации и классификации картинок (сверточная нейронная сеть CNN). Кроме того, обучение с учителем позволяет модели успешно работать с прогнозами: оценивать динамику спроса на товар и менять цену и другие количественные характеристики для максимизации выручки или строить прогноз на бирже.
Сервис должен помочь в автоматическом режиме с минимальными трудозатратами и знаниями бизнес пользователю натренировать нейронную сеть и выгрузить ее для использования в необходимой инфраструктуре (мобильное приложение, веб сервис, камера, IoT устройство и пр.) для разработчиков.
Для того чтобы обучение с подкреплением было результативно, важно пройти много предварительных тренировок. Долгий период развития навыков модели и необходимость большого количества примеров называют главными минусами этого формата. Если в будущей работе нейросеть столкнется с незнакомой ситуацией, то реакция будет непредсказуема.