Содержание статьи
Как работает нейронная сеть: разбираемся с основами
Что такое нейросеть
Искусственные нейроны составляют узлы, в которые заложены формулы. Узел получает информацию, осуществляет вычисление и направляет его дальше. Связь между ними обеспечивают синапсы – пути передачи данных, каждый из которых имеет вес. Последний является числовым коэффициентом, демонстрирующим важность результата нейрона по отношению к общим показателям. В необученных сетях распределение весов – случайное, если в ходе обучения путь ведет к эффективным решениям – его значимость (вес) увеличивается. Связи и показатели постоянно корректируются до тех пор, пока система не начнет выдавать стабильные результаты.
Предоставление информации. Когда нейросеть обучают, ей «показывают» данные, по которым необходимо что-то предсказать, и эталонные правильные ответы для них — это называется обучающей выборкой. Информации должно быть много — считается, что минимум в десять раз больше, чем количество нейронов в сети. Во время обучения нейросети показывают какую-либо информацию и говорят, что это такое, т.е. дают ответ. Все данные представляются не посредством слов, а с помощью формул и числовых коэффициентов. Например, изображению женщины соответствует «1», а изображению мужчины — «0». Это простой пример; реальные сети устроены сложнее. Преобразования. Входные нейроны получают информацию, преобразуют ее и передают дальше. Содержание информации автоматически обрабатывается с помощью формул и превращается в математические коэффициенты. Примерно как то, что мы видим глазами, превращается в нервные импульсы и передается в мозг. Он их обрабатывает, и человек понимает, что находится вокруг него. Здесь принцип похож. Обработка и выводы. У каждого нейрона есть «вес» — число внутри него, рассчитанное по особым алгоритмам. Он показывает, насколько показания нейрона значимы для всей сети. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются. В результате складывается ситуация, когда определенные нейроны реагируют, например, на силуэт человека — и выдают информацию, которая преобразуется в ответ: «Это человек». При этом человека не нужно описывать как набор математических фигур — во время обучения нейронная сеть сама задает значения весов, которые определяют его. Результат. Выводом нейронной сети становится набор формул и чисел, которые преобразуются в ответ. Например, если изображение мужчины — «0», а женщины — «1», то результат 0,67 будет означать что-то вроде «Скорее всего, это женщина». Нейросеть из-за своей структуры не может дать абсолютно точный ответ — только вероятность. И из-за закрытости и нестабильности нейронов ее показания могут различаться даже для одинаковых выборок.
Разноплановые «таланты» генеративного AI не на шутку испугали многих специалистов: по данным экспертов некоторые профессии вскоре могут исчезнуть с HR-рынка. В 2024 году Дженсен Хуанг, глава компании Nvidia, во время всемирного правительственного форума (проходил в ОАЭ) призвал более не обучаться программированию. По утверждению Дженсена, в ближайшем будущем кодингом начнут заниматься только нейросети. В качестве перспективной профессии он назвал промт-инжиниринг, связанный с созданием запросов для нейронок. Также акцентировал внимание на том, что получать знания стоит в сферах, связанных с сельским хозяйством, производством, биологией и образованием.
Разобрали техническую сторону функционирования нейронных сетей, перейдем к практической части. Сложные процессы и формулы остаются недоступными для пользователей: они вводят запрос, через несколько секунд получают результат. На практике все сложнее, для примера возьмем нейронку по генерации картинок:
Нейросети применяются для создания визуального контента – это иконки, видеоролики, изображения. Дополнительно стоит выделить написание музыки и озвучку. Есть повышение качества картинок и управление основными параметрами: раскрашивание, черно-белый, редактирование с удалением предметов, дорисовка фона, объединение нескольких фото и другое. Помимо этого, сети умеют переносить в цифровое пространство все нарисованное от руки. Например, дизайнер сделал эскиз макета сайта на бумаге, достаточно сфотографировать его и преобразовать, используя потенциал нейронки.
Биологические нейронные сети. Нервная система живого существа состоит из нейронов — клеток, которые накапливают и передают информацию в виде электрических и химических импульсов. У нейронов есть аксон — основная часть клетки, и дендрит — длинный отросток на ее конце, который может достигать сантиметра в длину. Дендриты передают информацию с одной клетки на другую и работают как «провода» для нервных импульсов. С помощью специальных шипов они цепляются за другие нейроны, и так сигналы передаются по всей нервной системе. В качестве примера можно привести любое осознанное действие. Например, человек решает поднять руку: импульс сначала появляется в его мозгу, потом через сеть нейронов информация передается от одной клетки к другой. По пути она преобразуется и в конечном итоге достигает клеток в руке. Рука поднимается. Так работает большинство процессов в организме — тех, которые управляются мозгом. Но главная особенность нейронных сетей — способность обучаться. И именно она легла в основу машинных нейросетей. Первые машинные нейросети. В сороковых годах прошлого века люди впервые попытались описать сеть нейронов математически. Затем, в пятидесятых, — воссоздать ее модель с помощью кода. Получилась та самая структура, которую назвали перцептрон. На графиках и иллюстрациях ее обычно рисуют как набор кругов и прямых, их соединяющих — это и есть нейроны, образующие сетку. Перцептрон был проще современных нейросетей. Он имел всего один слой и три типа элементов: первый тип принимал информацию, второй обрабатывал и создавал ассоциативные связи, третий выдавал результат. Но даже элементарная структура уже могла обучаться и более-менее точно решать простые задачи. Например, перцептрон мог ответить, есть ли на картинке предмет, который его научили распознавать. Он был способен отвечать только на вопросы, где есть два варианта ответов: «да» и «нет». После этого развитие нейросетей замедлилось. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему. Наработки шли неторопливо, но чем больше развивалась компьютерная отрасль, тем больше интереса вызывал концепт.
Domino’s Pizza. Компания ведет работу с Phrasee – генератором контента, который пишет электронные письма и интересные заголовки для пуш-уведомлений. Пока проект реализуется в тестовом режиме. Дополнительно – привлечение генеративного AI для повышения как численности клиентов, так и их лояльности. Сотрудничество с Phrasee позволило увеличить коэффициент кликов на более чем 50%.
Основа взаимодействия с генеративным ИИ – запросы пользователей, которые они могут вводить как голосом, так с и помощью клавиатуры. При составлении промтов нужно использовать формулировки, применимые для обычных технических заданий, ориентированных на специалистов. Чем конкретнее изложено требование, тем релевантнее будет результат. В помощь – следующие рекомендации:
Программирование и создание сайтов
Искусственный интеллект — понятие более широкое. Оно включает в себя не только нейронные сети, но и другие методы обработки информации, в том числе экспертные и логические программы. Нейронные сети — один из видов искусственного интеллекта. Их отличительная особенность — обучение и адаптация в основе алгоритмов.
Нейросети – компьютерные системы, имитирующие работу мозга человека. Они способны решать целый комплекс задач – от проверки программного кода и отрисовки картинок до написания текстов и музыкальных композиций. Легко выполняют роль «второго пилота», позволяя специалистам автоматизировать часть процессов, в некоторых случаях могут работать самостоятельно, основываясь лишь на текстовых или голосовых промтах (запросах). Рассказываем, что такое нейросеть простыми словами, разбираем принцип функционирования и основные сферы применения.
Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.
Это лишь малая часть профессий, которые нейронки не смогут заменить в ближайшие десятилетия. Однако их применение сопряжено не только с вытеснением с рынка специалистов: во многих отраслях они выполняют функцию помощника, лишь автоматизируя часть рутинных задач.
– конкуренция с людьми за рабочие места. В тех случаях, когда квалификация специалиста не особенно важна, сети могут заменить человека. Под удар попадают копирайтеры, иллюстраторы, дизайнеры, программисты. Это не значит, что у людей есть повод для паники, скорее это причина для профессионального роста и развития. Но повод, чтобы задуматься, серьёзный;
Существует три основных проблемы работы с сетями — это явления забывчивости и переобучения, а также непредсказуемость. В биологических нейронных сетях они тоже есть, но мы их корректируем. В искусственных нейросетях аналогично применяются методы корректировки, но это сложнее и не всегда может быть эффективно. Забывчивость. Представьте, что вы попали сразу в несколько незнакомых ситуаций, опыта для которых ранее не было. Скорее всего, вам будет тяжело эффективно работать. Даже простые, но отличающиеся действия будут вызывать стресс, вы будете допускать больше ошибок. В теории нейронных сетей это называется забывчивостью: программы плохо реагируют на большое разнообразие ситуаций. Если обстоятельства все время меняются, нейросеть будет пытаться подстроиться под каждое из них, и в результате точность решений упадет. Но если человек еще может сориентироваться в незнакомой обстановке, то программе это сделать сложнее, ведь она — «вещь в себе», лишенная нейропластичности. Переобучение. Это явление, когда модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к примерам оттуда, вместо того, чтобы учиться классифицировать что-то другое, не участвующее в обучении. Если вы когда-нибудь смотрели на автомобиль и видели, что фары похожи на глаза, а решетка радиатора — на рот, вы понимаете, как это работает. Нейросеть точно так же начинает путаться. Но ресурсов человеческого мозга хватает, чтобы понять, что машина — не настоящее лицо. Программа понять это не может и в подобной ситуации способна действительно выдать результат, что на картинке изображен человек. Еще один пример переобучения можно привести для сетей, которые создают что-то новое, например стиль. Вы, наверное, замечали, что у реальных художников и писателей есть свои характерные приемы, а их произведения со временем становятся все более похожими друг на друга. Это тоже пример переобучения — и генерирующие контент нейросети также ему подвержены. Непредсказуемость. Это прямое следствие закрытости и автономности нейронов. Сложно предугадать результат работы нейросети, будет ли она корректно работать в решении той или иной задачи. И если с предыдущими ошибками можно бороться благодаря правильным алгоритмам обучения, то непредсказуемость не пропадает. Это не стандартная программа, которая выдает известный результат для каждой ситуации. С непредсказуемостью тоже борются: точность можно повысить, если использовать подходящую архитектуру. Не обязательно более сложную — с некоторыми задачами хорошо справляются, наоборот, более простые сети. Но это дополнительно усложняет работу над нейросетями, особенно когда результат работы критичен.
Примеры популярных нейронных сетей
В 2024 году тот, кто приручил нейросеть — уже как минимум на шаг опередил конкурентов. Ведь нейронные сети существенно упрощают работу и ускоряют бизнес-процессы. Что же такое нейросети, какую пользу они могут принести бизнесу, в чём отличие нейросети от искусственного интеллекта — это и многое другое вы найдёте в нашей статье. В конце материала вас ждёт список нейросетей, которые упростят работу на маркетплейсах.
Сейчас на слуху «творчество нейросетей»: сгенерированные машиной тексты и стихи, несуществующие картины и фотографии людей, почти похожие на настоящие. Для человека вне IT это выглядит как чудо. Но на самом деле нейронные сети хорошо объясняются математически, хотя результат их работы действительно невозможно предсказать.
Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.
Нейросеть не осознает свои действия. Даже если она генерирует контент — она делает это машинально, на основе предыдущих данных, а не благодаря собственному мышлению. Вряд ли нейронная сеть, даже сложная, сможет догадаться, что созданное ей предложение абсурдно и не имеет смысла. Для нее нет такого понятия, как «смысл». Творчество нейросетей — примерно как «речь» говорящего попугая или «китайская комната». Поэтому есть мнение, что книга или картина, написанные нейросетью, не смогут заменить человеческие, даже если алгоритмы будут очень хорошо имитировать наше творчество. Вряд ли много кто захочет читать книгу, если точно известно, что автор не вкладывал туда никаких мыслей. Правда, пока создавать с нуля контент, похожий на настоящий, могут немногие системы. Но вы можете внести свой вклад в их развитие — если освоите, как они работают. Сейчас это направление востребовано как никогда. Тест: нейросеть или человек — сможете определить?
Volkswagen. С 2016 года автомобильный концерн ведет сотрудничество с компанией, которая функционирует на базе ИИ. Инструментарий обеспечивает аналитику, оптимизирующую рекламные процессы и бюджет. Используются рыночные данные (конкуренты, стоимость топлива, спрос). Сотрудничество принесло хорошие плоды: продажи Volkswagen !Up увеличились примерно на 14%, других моделей – на 20% и более.
Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.