Как научиться работать с нейросетями

0
11

Как работает нейронная сеть: разбираемся с основами

Что такое нейросеть

Искусственные нейроны составляют узлы, в которые заложены формулы. Узел получает информацию, осуществляет вычисление и направляет его дальше. Связь между ними обеспечивают синапсы – пути передачи данных, каждый из которых имеет вес. Последний является числовым коэффициентом, демонстрирующим важность результата нейрона по отношению к общим показателям. В необученных сетях распределение весов – случайное, если в ходе обучения путь ведет к эффективным решениям – его значимость (вес) увеличивается. Связи и показатели постоянно корректируются до тех пор, пока система не начнет выдавать стабильные результаты.

Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.

Нейросети – компьютерные системы, имитирующие работу мозга человека. Они способны решать целый комплекс задач – от проверки программного кода и отрисовки картинок до написания текстов и музыкальных композиций. Легко выполняют роль «второго пилота», позволяя специалистам автоматизировать часть процессов, в некоторых случаях могут работать самостоятельно, основываясь лишь на текстовых или голосовых промтах (запросах). Рассказываем, что такое нейросеть простыми словами, разбираем принцип функционирования и основные сферы применения.

ЧИТАТЬ ТАКЖЕ:  Что вбить в нейросеть

Основа взаимодействия с генеративным ИИ – запросы пользователей, которые они могут вводить как голосом, так с и помощью клавиатуры. При составлении промтов нужно использовать формулировки, применимые для обычных технических заданий, ориентированных на специалистов. Чем конкретнее изложено требование, тем релевантнее будет результат. В помощь – следующие рекомендации:

Разобрали техническую сторону функционирования нейронных сетей, перейдем к практической части. Сложные процессы и формулы остаются недоступными для пользователей: они вводят запрос, через несколько секунд получают результат. На практике все сложнее, для примера возьмем нейронку по генерации картинок:

Нейронная сеть – компонент искусственного интеллекта (ИИ или AI), является компьютерной системой, выстроенной на базе искусственных нейронов (вычислительные элементы). Как биологические нейроны в мозге человека, искусственные осуществляют обмен информацией. Не являются классической программой с готовыми алгоритмами, а пишут их в процессе обучения. Например, если генеративному ИИ показать тысячу примеров домов – она будет легко распознавать их в разных вариациях и сюжетах. Чем больше выборка домов, тем выше точность сети. Классическая структура включает в себя 3 слоя искусственных нейронов:

То есть нейронная сеть может заменить человека?

Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.

Разноплановые «таланты» генеративного AI не на шутку испугали многих специалистов: по данным экспертов некоторые профессии вскоре могут исчезнуть с HR-рынка. В 2024 году Дженсен Хуанг, глава компании Nvidia, во время всемирного правительственного форума (проходил в ОАЭ) призвал более не обучаться программированию. По утверждению Дженсена, в ближайшем будущем кодингом начнут заниматься только нейросети. В качестве перспективной профессии он назвал промт-инжиниринг, связанный с созданием запросов для нейронок. Также акцентировал внимание на том, что получать знания стоит в сферах, связанных с сельским хозяйством, производством, биологией и образованием.

Нейросети могут быть универсальными, например, ChatGPT и YandexGPT дают ответы на вопросы, ищут информацию, рисуют картинки, составляют бизнес-планы и решают другие задачи. В это же время Midjourney и Kandinsky ориентированы на отрисовку изображений, Codeium проверяет и дополняет код, а SteosVoice идеальна для озвучки. Помимо предназначения, классификация выполняется по типу архитектуры:

Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее. Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.

Levi’s. Бренд начал работу с компанией Lalaland.ai, специализирующейся на нейросетях. Основной продукт – генерация AI моделей на основе искусственного интеллекта: они практически неотличимы от реальных, что позволяет хорошо экономить на фотосессиях.

С нейросетями немного сложнее, их невозможно запрограммировать один раз и навсегда: они обучаются, самостоятельно пишут алгоритмы и инструкции, проводят сверку с ответами. Например, сеть для генерации изображений: изначально она «увидела» огромное количество картинок с подписями, чтобы научиться определять, что же на них запечатлено. Если нужно обучить нейронку распознавать текст или музыку – применяются подходящие примеры. Рассмотрим, как это работает:

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь