Как научить искусственный интеллект

0
18

Искусственный интеллект: как и где изучать — отвечают эксперты

Высшее образование

Тема ИИ и машинного обучения стала значительно более демократичной, чем несколько лет назад.
В интернете можно найти платные и бесплатные курсы на эту тему, инструменты становятся более простыми и менее требовательными как к знаниям, так и к аппаратному обеспечению.

Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).

Работа с искусственным интеллектом требует знания языков программирования, статистики и линейной алгебры. На старте обучения будет достаточно математики на уровне школьной программы и желания учиться. Например, курсы Skillfactory составлены так, чтобы вы начали с нуля и постепенно получили все необходимые знания и навыки.

На сегодняшний день самая быстро прогрессирующая часть искусственного интеллекта — это, пожалуй, нейронные сети.
Изучение нейросетей и ИИ стоит начать с освоения двух разделов математики — линейной алгебры и теории вероятности. Это обязательный минимум, незыблемые столпы искусственного интеллекта. Абитуриентам, желающим постичь основы ИИ, при выборе вуза, на мой взгляд, стоит обратить внимание на факультеты с сильной математической школой.

Как опытным, так и начинающим программистам рекомендую начать с онлайн-курсов на MOOC-площадках. Например, на Coursera есть отличная специализация «Машинное обучение и анализ данных» от Яндекса и Высшей школы экономики. Если нет проблем с пониманием лекций на английском языке, там же можно пройти курс Эндрю Ына «Machine Learning».

Искусственный интеллект — инновационная технология, которая предоставляет нам возможность решать самые сложные задачи и расширять наши познания. Это соединение машинного и человеческого интеллекта открывает перед нами новые горизонты и перспективы, которые могут изменить мир в лучшую сторону.

У нас есть проект по финтеху, связанный с машинным обучением и компьютерным зрением, в котором первый его разработчик писал все на C++, далее пришел разработчик, который все переписал на Python. Так что язык тут не самое главное, так как язык — это прежде всего инструмент, и от вас зависит, как его использовать. Просто на каких-то языках задачи решать быстрее, а на других более медленно.

Чаще всего можно услышать, что искусственный интеллект подразумевает способность электронной вычислительной машины анализировать данные и принимать решения в соответствии с принципами, по которым функционирует человеческий мозг. Таким образом, от нейросети мы вправе требовать умения обучаться и применять свои знания на практике. Современный искусственный интеллект успешно справляется с этими задачами.

Бесплатные продукты

Формально технологии искусственного интеллекта и нейросети сегодня можно внедрить в любую профессию: их используют маркетологи, писатели, врачи. Любой специалист, который знает, как грамотно применять ИИ для повышения эффективности, ценится выше среди работодателей.

Искусственный интеллект распознает речь, изображения и видео, самостоятельно генерирует контент, может управлять транспортом, сочинять музыку, диагностировать болезни. Можно сказать, что машинное обучение позволяет наделить ИИ практически любыми навыками. Однако и сейчас, и еще долгое время искусственному интеллекту будет нужен человек, который его обучает и направляет.

Учиться рекомендую в хороших российских вузах! Например, в МФТИ, МГУ, ВШЭ есть соответствующие кафедры. Большое разнообразие тематических курсов доступно на Coursera, edX, Udacity, Udemy и других MOOC площадках. Некоторые ведущие организации имеют собственные программы подготовки в области ИИ (например, Школа анализа данных у Яндекса).

Основные языки программирования для работы в области ИИ и машинного обучения — R и Python. Долгое время эти языки использовались в академических кругах и для них было создано большое количество библиотек. Сейчас развиваются инструменты, позволяющие быстро стартовать свой проект: Keras, TensorFlow, Theano, Caffe, scikit-learn. Последнее время Microsoft начал активно развивать свои инструменты: CNTK, ML.NET. Они позволяют создавать интеллектуальные решения на языке C#.

ЧИТАТЬ ТАКЖЕ:  Как выглядели фараоны нейросеть

GeekBrains — это ведущая образовательная онлайн-платформа в русскоязычном пространстве. Над курсами GB работают опытные преподаватели, которые отлично разбираются в теории и могут похвастаться практическими достижениями, а значит, на личном опыте расскажут, как создают ИИ. Программа обучения построена таким образом, чтобы у пользователей оставалось время на работу и личную жизнь. Кроме того, GB поможет войти в профессию. Для этого площадка обеспечивает все условия:

Не секрет, что сегодня технологии развиваются с огромной скоростью. Искусственный интеллект (ИИ, AI) и нейронные сети еще не так давно были плодом воображения писателей-фантастов, а сегодня стали реальностью. С искусственным интеллектом можно решать множество задач, ведь он широко применяется в разных областях — медицине, тяжелой промышленности, маркетинге и других. Мы постоянно используем ИИ в повседневной жизни, нередко сами того не подозревая. Поскольку все больше компаний и предприятий внедряет ИИ в свою деятельность, спрос на высококвалифицированных специалистов в соответствующей сфере стремительно растет.

ИИ сейчас активно развивается, и предсказывать на десять лет вперед сложно. На ближайшие два-три года будут доминировать подходы на базе нейросетей и вычислений на основе GPU. Лидером в этой области является Python с интерактивной средой Jupyter и библиотеками numpy, scipy, tensorflow.

Напоминаем, что вы можете задать свой вопрос экспертам, а мы соберём на него ответы, если он окажется интересным. Вопросы, которые уже задавались, можно найти в списке выпусков рубрики. Если вы хотите присоединиться к числу экспертов и прислать ответ от вашей компании или лично от вас, то пишите на admin@tproger.ru, мы расскажем как это сделать.

Как сделать свой ИИ самостоятельно: пошаговый план

Давайте ради конкретики возьмём трендовую профессию Data Scientist. Что делает этот человек? В общем и целом – собирает, анализирует и готовит к употреблению большие данные. Именно те, на которых растёт и тренируется ИИ. А что должен знать и уметь Data Scientist? Статический анализ и математическое моделирование – по умолчанию, причём на уровне свободного владения. Языки – скажем, R, SAS, Python. Также хорошо бы иметь какой-никакой опыт разработки. Ну и, вообще говоря, хороший дата-сайнтист должен уверенно себя чувствовать в БД, алгоритмике, визуализации данных.

Разные проекты требуют владения разными языками программирования. Я бы рекомендовал знать как минимум Python, Java и любой функциональный язык. Нелишним будет опыт работы с различными базами данных и распределёнными системами. Чтобы быстро изучать лучшие подходы, применяемые в индустрии, требуется знание английского языка.

Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.

Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.

Освойте профессию Data Scientist с нуля до уровня PRO на углубленном курсе, разработанном совместно с академиком РАН из МГУ. Изучите продвинутую математику с самых азов, получите реальный опыт на практических проектах и начните работать удаленно из любой точки мира.

Вариантов много: от самостоятельного изучения по методичкам и видеороликам на YouTube до вузовского образования. Но наиболее удобным можно считать онлайн-обучение: вы можете осваивать необходимые инструменты в удобное время, сохранить текущее место работы, совмещать процесс обучения с личными делами.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь