Содержание статьи
Обучение нейросети: методы и алгоритмы
Этапы обучения
Только что мы рассмотрели архитектуру базовой нейросети. Глубокие нейронные сети (сети глубокого обучения) обычно имеют много скрытых слоев, состоящих из миллионов связанных между собой искусственных нейронов. Количество связей одного нейрона с другими называют весом. Вес является положительным, если данный узел возбуждает другой, или отрицательным, если, наоборот, происходит подавление узла. Узлы с большим весом оказывают более сильное влияние на другие. Веса нейросети настраиваются в процессе обучения. Они определяют, какие данные будут учитываться при получении итогового результата, и какой вклад внесет тот или иной узел на выводы.
Но ее легко получить путем увеличения количества нейронов. Давайте попробуем реализовать обучение с тремя нейронами в скрытом слое и одним выходным (выход ведь у нас только один). Чтобы все получилось, создадим массив X и Y, имеющий обучающие данные и саму нейронную сеть:
Нейроны группируются в слои. Входной слой получает входные данные, скрытые слои обрабатывают информацию, а выходной слой отдает результат. Слои обычно соединяются последовательно, иногда могут встречаться и другие типы архитектур, например сверточные нейронные сети.
Главной особенностью алгоритма является вычисление обновления веса, выполняемое с помощью знака градиента, который указывает направление корректировки. Градиент представляет собой вектор, показывающий направление наибольшего увеличения функции. Он используется для обновления параметров модели с целью уменьшения значения функции ошибки. Алгоритм упругого распространения позволяет адаптировать скорость обучения отдельно для каждого веса. Если знак градиента не меняется, он увеличивает скорость обучения, а если наоборот — уменьшает. Такая регулировка помогает алгоритму гибко перемещаться по весовым пространствам со сложной многомерной архитектурой, быстрее и надежнее находить оптимальные решения.
Дабы найти значение ошибки E, надо найти сумму квадратов разности векторных значений, которые были выданы нейронной сетью в виде ответа, а также вектора, который ожидается увидеть при обучении. Еще надо будет найти дельту каждого слоя и учесть, что для последнего слоя дельта будет равняться векторной разности фактического и ожидаемого результатов, покомпонентно умноженной на векторное значение производных последнего слоя:
В этой статье мы рассмотрели основные типы и методы обучения нейросетей. Это направление продолжает активно развиваться и считается одним из самых перспективных в сфере искусственного интеллекта. В будущем ожидается появление еще более эффективных методов и алгоритмов, которые позволят нейронным сетям решать максимально сложные задачи, сейчас доступные только человеку.
Нейрослой
Для проверки эффективности обучения нейросети нужно предоставить ей данные из другой части той же выборки, по которой она училась. Если сеть не выдает устраивающих нас ответов, возможны несколько причин появления подобных ошибок. Во-первых, это недостаточный объем данных из окружающей среды. Во-вторых, возможно данные из окружающей среды были недетерминированы. Наконец, не исключен вариант некорректного определения тренировочных и тестовых датасетов.
Функция активации определяет, как нейрон будет реагировать на входные данные. Она может быть линейной или нелинейной, и ее выбор зависит от конкретной задачи, которую решает нейронная сеть. Эта функция помогает сети обучаться более сложным взаимодействиям между данными.
Под искусственной нейронной сетью (ИНС) понимают математическую модель (включая ее программное либо аппаратное воплощение), которая построена и работает по принципу функционирования биологических нейросетей — речь идет о нейронных сетях нервных клеток живых организмов.
Машинное обучение (Machine Learning или сокращенно ML) — одно из самых сложных и перспективных направлений развития искусственного интеллекта (ИИ). Фактически оно представляет собой набор приемов, алгоритмов и методов, позволяющих ИИ учиться и решать задачи не в строгих рамках, заданных программой, а на базе постоянного совершенствования знаний и накопления опыта. Именно таким образом в течение жизни учимся и мы с вами.
Пусть у нас уже есть нейронная сеть, но ведь ее ответы являются случайными, то есть наша нейросеть не обучена. Сейчас она способна лишь по входному вектору input выдавать случайный ответ, но нам нужны ответы, которые удовлетворяют конкретной поставленной задаче. Дабы этого достичь, сеть надо обучить. Здесь потребуется база тренировочных примеров и множество пар X — Y, на которых и будет происходить обучение, причем с использованием известного алгоритма обратного распространения ошибки.
Говоря проще, ИНС можно назвать неким «черным ящиком», превращающим входные данные в выходные данные. Если же посмотреть на это с точки зрения математики, то речь идет о том, чтобы отобразить пространство входных X-признаков в пространство выходных Y-признаков: X → Y. Таким образом, нам надо найти некую F-функцию, которая сможет выполнить данное преобразование. На первом этапе этой информации достаточно в качестве основы.
Алгоритмы обучения нейросетей
Существует достаточно много способов обучения нейронных сетей. Однако все они сводятся к двум основным концепциям: с помощью учителя и без него. В этой связи снова можно провести аналогию с мозгом человека. Люди также способны приобретать опыт или с наставником, способным прочитать курс лекций, направлять и указывать верный путь к решению задачи, или самостоятельно, ориентируясь лишь на собственные наблюдения и полученный опыт. Рассмотрим оба этих принципа более подробно.
Он заключается в многократном повторении двух действий — прямого и обратного. Прямое действие — это передача входных данных через нейросеть и вычисление прогнозируемого результата. Данные от входного узла к выходному могут передаваться большим количеством различных путей. Правильным же считается только один, который сопоставляет входные данные с нужными выходными. Поиск этого пути в рассматриваемом алгоритме ведется с помощью петли обратной связи. Делается это следующим образом:
Данные поступают в нейросеть, обрабатываются формулами, после чего пользователю выдается результат. Самая главная сложность заключается в том, как найти такие уравнения и алгоритмы, благодаря которым результат работы нейросети будет максимально полезным. Машинное обучение как раз и заключается в выведении этих формул.
Еще одним подвидом ML является трансферное обучение. Оно подразумевает использование знаний, полученных при решении одной задачи, для повышения эффективности работы над другой задачей. Процесс включает предварительное обучение на большом массиве данных и последующую точную настройку под специфику новой целевой задачи. Трансферное обучение в некоторых случаях позволяет существенно сэкономить время и ресурсы. Особенно оно актуально для ситуаций, когда необходимые исходные данные слишком дороги или ограничены для получения.
Один нейрон может превратить в одну точку входной вектор, но по условию мы желаем получить несколько точек, т. к. выходное Y способно иметь произвольную размерность, которая определяется лишь ситуацией (один выход для XOR, десять выходов, чтобы определить принадлежность к одному из десяти классов, и так далее). Каким же образом получить n точек? На деле все просто: для получения n выходных значений, надо задействовать не один нейрон, а n. В результате для каждого элемента выходного Y будет использовано n разных взвешенных сумм от X. В итоге мы придем к следующему соотношению:
Последовательность нейрослоев часто применяют для более глубокого обучения нейронной сети и большей формализации имеющихся данных. Именно поэтому, чтобы получить итоговый выходной вектор, нужно проделать вышеописанную операцию пару раз подряд по направлению от одного слоя к другому. В результате для 1-го слоя входным вектором будет являться X, а для последующих входом будет выход предыдущего слоя. То есть нейронная сеть может выглядеть следующим образом: