Искусственный интеллект кто ты

0
10

HSE Daily

Основы теории: Что такое искусственный интеллект?

С другой стороны, мы можем говорить и о новшествах при обработке этого огромного количества разных данных. Появляются механизмы, которые позволяют не только переработать текстовую информацию в количественную, но и найти какие-то взаимосвязи между этими данными. Это, конечно же, можно делать и в эконометрическом исследовании, но здесь используются другие подходы, которые в каком-то смысле более гибкие, потому что мы можем не создавать какие-то жесткие формы взаимосвязи, как в эконометрике, а пытаться получить эту форму из данных.

Мне хотелось бы, чтобы за счет искусственного интеллекта мы могли узнавать о мире больше, чтобы наука была более прогрессивной, чтобы мы могли делать открытия быстрее, больше заботиться о нашей окружающей среде. Чтобы мы не совершали ошибки, а как-то могли их просчитать и предупредить, чтобы не было ситуаций, когда у нас происходят наводнения, пожары и тому подобное, чтобы эти модели нам в том числе позволяли заранее идентифицировать такие события и мы могли предупреждать их.

Сейчас очень много исследований, которые на самом деле идут на стыке методов, когда одновременно применяются и эконометрические подходы, и методы машинного обучения. И вот такой симбиоз методов позволяет получать наиболее интересные результаты и еще более аккуратно обрабатывать данные. То есть мы часть работы с данными отдаем машинному обучению — например, когда мы изучаем семантический анализ текстов и из этих текстов пытаемся что-то вычленить, перевести в количественные измерения, а потом эти данные использовать в эконометрических моделях. Машинное обучение здесь может быть использовано для того, чтобы улучшить прогноз экономических показателей. Из примеров — работа с социальными сетями или поисковыми запросами, которые затем используются уже в эконометрических моделях.

— С одной стороны, сервисы искусственного интеллекта называют учебными ассистентами, и часто их используют именно как помощников: они помогают вам сортировать почту по тематике, обрабатывать большие массивы данных, составлять планы работ и т.д. Но, с другой стороны, если юные студенты с самого начала будут использовать труд этих помощников, сами не попробовав хотя бы написать письмо, составить план, решить задачу, мне кажется, что какие-то навыки, soft skills и даже иногда hard skills, у них будут утеряны. Все-таки, прежде чем пользоваться этими помощниками, надо самому пройти школу жизни, сначала самим научиться делать даже рутинные вещи, чтобы в том числе потом контролировать то, что вам будет выдавать искусственный интеллект.

Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.

Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.

Что такое обработка естественного языка?

По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.

ЧИТАТЬ ТАКЖЕ:  Яндекс как обучить искусственный интеллект

— Какие чаты, помимо ChatGPT, GigaChat и Yandex GPT, можно рекомендовать для учебы студентам?

— Campus.ai — это GPT-чат, который сделан для студентов. Это целая библиотека задач с решениями, которые делали эксперты по разным областям: есть задачи по физике, по юриспруденции, по экономике, по математике и др. Если задача сложная и многосоставная, лучше ее разбивать на несколько поэтапных и задавать последовательно. Есть возможность изучить кейсы решения задач, схожих с вашей.

Искусственные нейронные сети — это математические модели, обеспечивающие глубокое обучение. По своей сути они являются имитацией человеческого мозга. Состоящий из слоев взаимосвязанных узлов, называемых искусственными нейронами или перцептронами, каждый искусственный нейрон принимает входные данные, выполняет вычисления и генерирует выход. Затем полученные результаты передаются следующему слою перцептронов, создавая иерархическую структуру.

— Навыки работы с современными средствами должны быть, их надо развивать. Мы, наше поколение, сейчас такого навыка не имеем, и мы тоже его осваиваем. В Вышке сейчас проходит повышение квалификации преподавателей: нас учат использовать искусственный интеллект в образовательном процессе, и в том числе нас активно мотивируют применять его в своих курсах. Одно из заданий наших обучающих курсов — предложить, как мы можем использовать искусственный интеллект так, чтобы наш курс был более современен, шел в ногу со временем и обучал студентов использовать новые технологии.

В целом, каждая из наук развивалась своим трендом. В эконометрических исследованиях больший акцент был сделан именно на выявлении причинно-следственных связей, а не на корреляциях, которые в большинстве случаев находятся с помощью обычных регрессионных моделей. Если говорить о развитии искусственного интеллекта, то здесь тренды связаны с тем, что появилось больше данных и больше мощностей, которые позволили эти данные изучать. С помощью искусственного интеллекта в основном решаются задачи, связанные с разработкой алгоритмов для быстрой обработки данных. В экономической науке существуют нюансы, связанные с особенностями оценивания моделей на различных выборках: когда мы работаем с результатами опросов, мы можем иметь дело с совсем небольшими выборками, и там возникают совсем другие проблемы, которые уже решаются другими способами.

— В современных экономических моделях применяются всевозможные и всеразличные методы анализа данных — все зависит от той задачи, которую вы решаете. Так, например, очень успешно показала себя эконометрика, которая применяется в тех случаях, когда нам нужно оценить эффекты воздействия, раскрыть причинно-следственную связь между переменными и понять, какая из переменных есть причина, а какая — следствие. В случаях же, когда мы говорим о задачах прогнозирования, очень хорошие результаты показывают уже методы машинного обучения. И здесь, в зависимости от задачи, могут быть разные подходы.

Может быть, это не за горами — эта опция появится, и искусственный интеллект лучше будет отслеживать такие вещи. Но пока мы, исследователи, имеем некоторые преимущества в этом плане перед искусственным интеллектом. Мы можем в своей экспертизе отлавливать нестандартные ситуации, применять разные подходы, разные алгоритмы.

Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь