Содержание статьи
AI в 2023 году: как развивается искусственный интеллект
Что такое искусственный интеллект и какие компоненты его составляют
Одно из перспективных направлений в области развития ИИ — метод, согласно которому нейронная сеть самостоятельно исследует процесс создания искусственного интеллекта и вносит изменения в алгоритмы кода. Это позволяет ей не только изучать, но и улучшать свою топологию и архитектуру.
Сегодня рынок искусственного интеллекта является самым быстрорастущим в мире. Согласно прогнозам исследовательской компании Statista, c 2024 по 2030 год мировой рынок ИИ будет расти со скоростью 28,46% в год. А по мнению заместителя председателя правительства Российской Федерации Дмитрия Чернышенко, экономический эффект от внедрения искусственного интеллекта увеличит ВВП России к 2030 году на 11 трлн руб.
Технически современная наука может создать модель ИНС, которая по количеству нейронов будет сравнима с нейронной сетью кошки. Но мозг — это не просто массив отдельных нейронов, имеющих связь друг с другом. Это сложная динамическая система — её рабочие процессы до сих пор изучены далеко не полностью. Это же можно сказать и про сознание, многие принципы которого до сих пор неизвестны. Так что даже сознание кошки — цель для современного ИИ пока недостижимая. И выступает он сегодня только в качестве помощника, которые берёт на себя множество рутинных задач, требующих обработки больших массивов данных.
Этот пример — сильно упрощённая модель как искусственной нейронной сети, так и биологической нейросети человека или животного. Архитектуры и топологии современных глубинных ИНС гораздо сложнее и масштабнее. Они имеют множественные слои ассоциативных элементов, способных структурировать и ранжировать информацию. Эти сети создают многоуровневые композиции из примитивных данных, которые позволяют моделировать сложные, нелинейные отношения.
Искусственная нейронная сеть (ИНС) — система соединённых и взаимодействующих между собой простых блоков математических операций, моделирующих искусственные нейроны. В целом модель искусственной нейросети имитирует принципы сетей нервных клеток мозга живого организма. Такие системы не программируются в привычном смысле этого слова — они обучаются. Наибольшее применение нейронные сети нашли в программных приложениях, которые трудно выразить традиционным компьютерным алгоритмом, написанным на основе правил. Например, для работы с изображениями, видео, текстом и звуком.
Компьютерный интеллект, в отличие от человеческого мышления, не связан с эмоциями и особенностями личности. Да, системы на основе ИИ способны понимать и синтезировать речь, решать и действовать. Однако эти решения и действия не имеют никакой эмоциональной окраски — они основаны только на результатах обработки информации.
Искусственный интеллект уже решает множество задач, на выполнение которых у людей ушли бы тысячи часов: обыгрывает шахматных гроссмейстеров, выявляет переломы на рентгеновских снимках, выбирает самый быстрый маршрут для грузовика доставки, проводит тестирование компьютерных программ с экрана. При этом у ИИ из-за отсутствия какой-либо субъектности нет понимания того, как он выполняет эти задачи.
Все элементы перцептрона связаны между собой, и у каждой связи есть вес — число, отвечающее за то, каким образом сигнал будет преобразован. Если в процессе обучения предсказание нейросети будет отличаться от эталонной разметки, веса нейросети изменятся так, чтобы в следующий раз предсказание для этой картинки было корректным. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются по особым алгоритмам. Впоследствии, если обучение прошло хорошо, полученную нейросеть с выученным набором весов можно будет использовать для классификации новых изображений, которые не вошли в обучающий датасет.
Насколько искусственный интеллект приблизился к человеческому
С пунктами 4 и 5 всё гораздо сложнее, поскольку их реализация выходит за границы бесхитростной логики машины. Здесь начинают играть такие понятия, как осознание своей личности и эго, бессознательное, эмоции, чувства. Та удивительная смесь индивидуальной биохимии, личного жизненного опыта и его интерпретации, которая делает нас теми, кем мы являемся — людьми в полном понимании этого слова.
Перед нами задача классификации изображений, когда нейросеть присваивает метки картинкам после идентификации изображённых на них объектов. Такие примеры решаются по принципу «обучение с учителем»: для тренировки модели нужно собрать полный набор размеченных изображений.
Сегодня технологии искусственного интеллекта используют в смартфонах, системах умных домов, медицине, образовании и промышленности. Однако эти разработки не могут в полной мере заменить человека: ИИ не обладает той же многозадачностью, в которой может работать человеческий мозг.
Учёные предполагают, что с учётом видимого роста производительности машин и совершенствования архитектуры нейронных сетей, систему, которая будет наиболее полно имитировать работу человеческого мозга, получится создать в 2030–2035 годах. Такой отдалённый прогноз имеет много условностей — погрешность в сроках довольно велика. Однако и ближайшее будущее ИИ несёт нам много интересных событий.
Эксперты из института Epoch AI проанализировали все прогнозы профессиональных исследователей относительно того, когда человечество создаст AGI. Вероятность создания общего искусственного интеллекта к 2030 году оценивается ими в среднем в 25%, к 2050 году в 57%, к 2100 году в 88%.
Искусственный интеллект (ИИ), базирующийся на больших языковых моделях (Large Language Model) и машинном обучении, в публичном поле появился всего два с половиной года назад. Но за короткое время он успел стать технологией, оказывающей заметное влияние на развитие экономики и формирование новых рынков.
Анализ больших данных (от англ. Data Mining) позволяет находить полезные и доступные решения в различных сферах человеческой деятельности. Мобильные устройства, облачные вычисления и интернет вещей расширяют экосистему больших данных, давая новые возможности для извлечения полезных знаний, выявления тенденций и настройки алгоритмов.
Искусственный интеллект, базирующийся на больших языковых моделях (Large Language Model) и машинном обучении, в публичном поле появился всего два с половиной года назад, но за короткое время успел стать сквозной технологией, оказывающей огромное влияние на развитие экономики и формирование новых рынков.
В процессе обучения с S-элементов нейросети на А-элементы из обучающего датасета поступает изображение объекта — например, кошки. Сигнал преобразуется и передаётся дальше на R-элементы нейросети — те, что, по сути, делают предсказание. Полученное предсказание сравнивается с разметкой эталона.
Один из ярких примеров этого способа — AutoML, проект компании Google, который использует автоматическое машинное обучение своих нейросетей. В процессе обучения ИНС сама подбирает алгоритмы, наиболее подходящие для выполнения той или иной задачи. Одновременно с этим алгоритмы-подборщики проходят обучение с людьми. Благодаря тому, что машина в единицу времени способна обработать огромные массивы информации и проанализировать миллионы различных вариантов написания кода, процесс обучения и развития ИИ идёт гораздо быстрее, чем если бы это делала группа программистов.
Например, чтобы научить систему распознавать изображения, специалисты используют большой массив изображений — датасет, с описанием, или разметкой, представленных на них объектов: человек, кошка, автомобиль и так далее. После загрузки массива картинок, по мере анализа полученной информации, программа учится самостоятельно идентифицировать объекты. Связь между нейронами, которые привели к правильному ответу, усиливается, а к неправильному — ослабляется. После многократных итераций сеть создаёт правильные нейронные соединения — в этот момент можно сказать, что система научилась верно решать задачу.
Комбинируя различные виды архитектур ИНС, инженеры создают многокомпонентные системы для различных задач. Быстрее всего развиваются такие области, как компьютерное зрение, распознавание речи и аудио, обработка естественного языка, биоинформатика, генерация изображений, текстов и машинного кода.
Можно с уверенностью сказать, что сегодня ИИ — это всего лишь множество интеллектуальных систем и их комбинаций, способных решать конкретные задачи: рисовать, водить автомобиль, проводить тестирование компьютерной программы или даже писать довольно крупные фрагменты кода. Однако о появлении общего искусственного интеллекта, обладающего разумом и самосознанием, пока говорить рано. Поэтому в противовес термину «общий ИИ» используется «слабый ИИ», чтобы обозначить технологию, которая пусть и может справляться с отдельными задачами лучше человека, но не обладает сознанием и не способна сравниться с интеллектом человека на широком спектре задач.
Сегодня рынок искусственного интеллекта является самым быстрорастущим в мире. Согласно прогнозам исследовательской компании Statista, c 2024 по 2030 год мировой рынок ИИ будет расти со скоростью 28,46% в год. А по мнению заместителя председателя правительства РФ Дмитрия Чернышенко, экономический эффект от внедрения искусственного интеллекта увеличит ВВП России к 2030 году на 11 трлн руб. Главным вызовом для большинства исследователей и разработчиков ИИ стал вопрос создания AGI (Artificial general intelligence) — так называемого общего искусственного интеллекта. Точное определение AGI еще не сложилось, но большинство экспертов определяет его как ИИ, который соответствует или превосходит человеческие возможности в широком спектре когнитивных задач. Именно это, по мнению директора управления экспериментальных систем машинного обучения SberDevices Сергея Маркова, отличает AGI от существующих сегодня нейросетевых моделей. «Пчела найдет оптимальный маршрут в улей быстрее и лучше, чем это сделал бы человек, хотя в ее нервной системе несколько сотен тысяч нейронов, а у человека восемьдесят шесть миллиардов. Уже сегодня мы можем взять почти любую простую задачу и сделать систему, которая решит ее лучше человека. А вот AGI, или общий искусственный интеллект, — это универсальная система, которая сможет решать неизвестные ей ранее задачи. И к созданию таких систем мы сейчас только приближаемся», — отмечает Марков. Эксперты из института Epoch AI проанализировали все прогнозы профессиональных исследователей относительно того, когда человечество создаст AGI. Вероятность создания общего искусственного интеллекта к 2030 году оценивается ими в среднем в 25%, к 2050 году — в 57%, к 2100 году — в 88%. При этом руководитель научных исследований обработки естественного языка в лаборатории T-Bank AI Research Даниил Гаврилов считает, что общий ИИ может появиться раньше. Он отмечает, что и аналитики, и разработчики, делая прогноз в 2021 году о качестве нейросетевых моделей к 2022 году, ошиблись более чем в два раза в меньшую сторону. «Нам очень тяжело думать об экспоненциальном росте, а именно так сейчас развиваются большие языковые модели. Такая скорость тяжело укладывается в голове, поэтому те предсказания, которые мы слышали, оказались более пессимистичны, чем реальность. Если экстраполировать текущую скорость развития ИИ, то уже к 2027 году мы получим если не полноценный AGI, то что-то качественно иное относительно того, что мы имеем сейчас», — считает Гаврилов. Согласно данным Epoch AI, сегодня существуют несколько разнонаправленных трендов, которые будут влиять на скорость развития ИИ в ближайшие годы. Так, производительность «железа», которое требуется для обучения и работы нейросетей, удваивается каждые 2-3 года. А переход на новые тензорные ядра в графических процессорах NVIDIA привел к одномоментному 10-кратному росту производительности. Среди негативных факторов, тормозящих развитие ИИ, эксперты Epoch AI выделяют дефицит данных для обучения ИИ. Согласно их прогнозам языковые модели полностью израсходуют запас публичных данных, размещенных в интернете, между 2025 и 2032 годами. Для дальнейшего обучения нейросетевых моделей потребуется использовать синтетические данные, то есть сгенерированные ИИ. Таким образом, искусственный интеллект начнет обучать себя сам. А вот к каким последствиям это приведет, сегодня не может предсказать ни один эксперт.