Содержание статьи
Виды искусственного интеллекта — их особенности и применение
Эксперт о будущем автономных машин:
Долгие годы алгоритмы пытались найти закономерности в часто непредсказуемом характере водителей, но на сегодняшний деть беспилотные автомобили проанализировали данные, собранные в ходе движения автомобилей по реальным дорогам, проехавших в общей сложности не один миллион километров. И в Сан-Франциско уже работают первые коммерческие автономные такси без водителя.
Именно этот принцип лежит в основе технологий, которая позволяет вам подтвердить голосом по телефону банковскую транзакцию, просто сказав «да», или попросить мобильный телефон показать вам прогноз погоды на ближайшие несколько дней в городе, куда вы собираетесь поехать.
Так как всё больше автопроизводителей вкладывают средства в транспорт, то ожидается, что беспилотные авто скоро будут представлены на рынке в большом количестве. Согласно прогнозу к 2040 году автономный транспорт будет широко применяться в общественном транспорте. По прогнозам, к 2045 году в автомобильном парке число таких новых машин приблизится к половине.
борьба с атаками на информационную безопасность на базе ИИ — сразу, как была выявлено, что атака с использованием искусственного интеллекта может быть эффективной, стало понятно, что данные нападки на систему можно избежать путём привлечения ресурсов нейронных сетей
Работающие по этому принципу алгоритмы научились анализировать медицинские снимки, выявляя злокачественные опухоли на самых ранних этапах формирования, поскольку за время, которое требуется консультанту для детального анализа одного изображения, AI способен обработать тысячи снимков.
Эта базовая система, которая не способна хранить полученный опыт. Она не способна к обучению и у неё нет памяти. Система фокусируется на решении данных задачах. Этот вид ИИ востребован в бизнесе, когда нужна быстрая реакция, а опыт не важен. Например, реактивная система победила чемпиона мира по шахматам Гарри Каспарова в 1997 году
ИИ все шире используется в производственных операциях, что привело к появлению нового термина — адаптивный интеллект. Адаптивные интеллектуальные приложения помогают принимать более эффективные бизнес-решения за счет использования внутренних и оперативных внешних данных в реальном времени и высокомасштабируемой инфраструктуры.
Эта система не ограничена по уровню выполняемых операций, она предназначена для решения интеллектуальных задач. Цель вида — разработать систему, которая будет думать самостоятельно как человек. Сегодня сильный тип на стадии создания и разработки, нужно чтобы техника могла работать в коллективе
От искусственного интеллекта к интеллекту адаптирующемуся
Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.
По мнению аналитиков генеративный искусственный интеллект в предстоящие лет 5 будет трендом, так как к нему сегодня вырос интерес и он обладает хорошей коммерциализацией. Но применение генеративного ИИ имеет большие риски. Главный — повышенная угроза, создаваемая «глубинными подделками». Создание человеческих обликов, которые реалистичны, часто применяются чтоб обмануть или в качестве мошенничества в финансовой области. Особая опасность кроется в дипфейках реального времени основанных на ИИ, они могут подделывать человеческий голоса.
ИИ является стратегической необходимостью для любой компании, которая хочет повысить производительность, открыть новые возможности для получения прибыли и укрепить лояльность заказчиков. Эта технология уже помогла многим компаниям добиться конкурентного преимущества. Благодаря ИИ можно делать больше за меньшие сроки, обеспечивать эффективное персонализированное обслуживание и прогнозировать результаты, а значит — получать большую прибыль.
Узкоспециализированный, используется для решения только конкретной задачи и выдачи данных. Этот интеллект работает в строгих рамках, имеет набор языков и контекстов. Например, если данный интеллект настроен на поиск спама, то он не способен произвести сортировку почты
Сегодня искусственный интеллект — быстро развивающаяся область, которая изменит нашу жизнь. ИИ включает в себя методики, состоящие из следующих наук: математики, биологии, психологии, кибернетики, которые используются в разработке программ. Несмотря на мнение, что скоро техника заменит людей, это не так. В ближайшее время люди и машины будут с большей активностью взаимодействовать между собой на пользу человечества.
Этот тип систем ИИ давно известен. Он сохраняет и использует опыт. Такой интеллект может улучшить работу проанализировав предыдущий опыт. Например, с таким интеллектом — робот-пылесос. Робот перемещается по комнате и убирает её на основании карты, которая построена с использованием датчиков. Другой пример — беспилотная техника собирает и хранит информацию о ближайших автомобилях: скорость, расстояние
Термин «Искусственный интеллект» впервые произнёс Джон Маккарти, который и стал его автором. Он собрал первую конференцию в 1956 году, речь на которой шла о машинах, способных мыслить как человек, осуществлять обучение, собирать больше данных и производить обработку информации.
Чат-боты проявились в период пандемии, когда все компании переводили сотрудников на удалённую работу. Масса виртуальных помощников применяет глубокое обучение. Эффективная сторона этого вида ИИ — моделирование с помощью языка, что позволяет машине из слов составлять текст и переработать его в компьютерный код.
Обучение и развитие моделей ИИ
Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.
Тем не менее ИИ остается достаточно новой и сложной технологией. Чтобы полностью раскрыть ее потенциал, чтобы создавать и применять решения на основе ИИ, необходим высокий уровень квалификации. Для достижения успеха недостаточно просто нанять специалистов по изучению данных. Необходимо использовать правильные инструменты, процессы и стратегии управления.
«Цифровой двойник» считается физически точной виртуальной копией объектов. Эта технология — прорыв в цифровой трансформации, она развивалась параллельно искусственному интеллекту. ИИ делает лучше «цифровые двойники», он позволяет технологии проводить анализ вероятных сценариев, предоставляя необходимое количество данных исследователям. Всё это работает на увеличение эффективности и упрощение процесса принятия решений.
ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.
С искусственным интеллектом сегодня знаком любой человек, который пользовался хоть раз интернетом. Он применяется в разных сферах, может быть секретарём, решать проблемы с экологией и использоваться в здравоохранении, а также система способна управлять компьютером или распознавать лица.
Революция в фармацевтической области ожидается при использовании искусственного интеллекта для производства лекарственных препаратов. Это связано с увеличением скорости и точности обработки данных. Использование ИИ даёт надежду, что возможна победа над неизлечимыми заболеваниями, а система здравоохранения в большей степени станет автоматизированной.