Искусственный интеллект как называют

0
32

Искусственный интеллект

ИИ: истории успеха

Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

Тем не менее ИИ остается достаточно новой и сложной технологией. Чтобы полностью раскрыть ее потенциал, чтобы создавать и применять решения на основе ИИ, необходим высокий уровень квалификации. Для достижения успеха недостаточно просто нанять специалистов по изучению данных. Необходимо использовать правильные инструменты, процессы и стратегии управления.

ИИ все шире используется в производственных операциях, что привело к появлению нового термина — адаптивный интеллект. Адаптивные интеллектуальные приложения помогают принимать более эффективные бизнес-решения за счет использования внутренних и оперативных внешних данных в реальном времени и высокомасштабируемой инфраструктуры.

Разработчики применяют искусственный интеллект, чтобы эффективнее выполнять задачи, которые в ином случае пришлось бы делать вручную, взаимодействовать с заказчиками, выявлять закономерности и решать проблемы. Для начала работы с ИИ разработчикам потребуются математические знания и умение пользоваться алгоритмами.

Главное отличие искусственного интеллекта от других программ в отсутствии чётко заданного алгоритма решении задачи [3] . Согласно одной из распространённых версий, есть необходимый набор свойств для программы, чтобы считаться искусственным интеллектом. Исследователи уточняют, что список может быть неполным, так как какие-то из свойств интеллекта ещё не открыты или достаточно не изучены. Список выглядит так [4] :

Начало работы с ИИ

Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.

SMM-щики, вероятно, знакомы с этим понятием благодаря системе, по которой фейсбук, твиттер и инстаграм определяют, какие новости отображать в ленте новостей. SEO-маркетологи регулярно сталкиваются с алгоритмами поисковых систем, определяющими рейтинг сайта и его позицию в поиске. Да можно даже далеко не ходить. Если у тебя есть подписка на Netflix, ты можешь наглядно увидеть, как компания использует алгоритм для подбора новых сериалов на основе твоих прошлых предпочтений.

Если рассматривать искусственный интеллект как составляющую часть научной дисциплины, мы получим когнитивистику, как она есть. Это направление, изучающее разум и процессы, происходящие в ИИ, собравшее в себе элементы философии, психологии, лингвистики, антропологии и нейробиологии.

науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.

ЧИТАТЬ ТАКЖЕ:  Форма жизни no 4 как остаться человеком в эпоху расцвета искусственного интеллекта черешнев евгений

Исследования в сфере искусственного интеллекта делятся на две категории: теоретические и практические; последние, в свою очередь имеют базовые и прикладные аспекты. Направлений исследования ИИ два. Первое, биологическое, основывается на том, что раз человек обладает интеллектом, искусственные системы должны имитировать его психологию или физиологию. Второе, феноменологическое, изучает само понятие интеллекта, проблемы, стоящие перед миром и способы достижения целей. Оба этих подхода в определённой степени взаимодействуют между собой. Также исследования ИИ тесно взаимодействуют с философией, особенно современной аналитической, так как обе отрасли науки изучают мышление [5] .

ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.

Примечания

Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .

Искусственный интеллект — это наука и технология создания интеллектуальных машин, в первую очередь интеллектуальных компьютерных программ. Интеллект в данном случае — это вычислительная способность достигать целей в мире, присущая человеку, многим животным и некоторым машинам. При этом до сих пор в научном сообществе нет чёткого понимания, какие вычислительные функции считать интеллектом в силу понимания только части из них; по этой причине точного общепринятого определения интеллекта, не завязанного на интеллект человека, не существует. Также из-за того, что интеллект — это сложное понятие, состоящее из множества свойств и функций, некоторые из которых до сих пор не поддаются вычислительным машинам, невозможно чётко отделить «интеллектуальные» машины от «не интеллектуальных»; многие из вычислительных систем, созданных для выполнения той или иной функции можно назвать «в какой-то мере интеллектуальными» [1] .

Конечная цель практически всех исследований в области искусственного интеллекта — получить ИИ уровня, сопоставимого с человеческим интеллектом. В методах достижения этой цели единства у исследователей нет: кто-то считает, что это достижимо в обозримом будущем с применением существующих технологий и подходов путём увеличения вычислительной и запоминающей мощности несущих ИИ-устройств, а кто-то — что сроки загадывать невозможно, так как существующие подходы к созданию искусственного интеллекта требуют переработки или даже полной замены другими [1] .

Одна из наиболее осуществимых систем применения ИИ — эвристика, то есть сортировка информации по категориям, используя имеющиеся данные. Пример такой деятельности — анализ контрагентов при банковских операциях [7] . Ещё одна сфера, в которой искусственный интеллект необходим — самоорганизующиеся системы, то есть компьютерные системы, способные изменять себя согласно заданным параметрам, условиям окружающей среды или необходимым к выполнению задачам [9] .

Очень мало людей понимают, что такое искусственный интеллект, и как он работает. Название наводит на мысли о человекоподобных машинах, фильме «Я, робот» и захвате планеты. Мало кому в голову придет озвучить в качестве ассоциации Netflix или персонализированные плейлисты Spotify. На самом деле, по результатам исследований HubSpot, 63% опрошенных уже давно впустили искусственный интеллект в свою жизнь, просто не подозревают об этом.

ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь