Искусственный интеллект как научное направление

0
14

Искусственный интеллект: между мифом и реальностью

Применение

Для Джона Мак-Карти и Марвина Мински, как и для прочих организаторов летнего семинара в Дартмут-колледже, ИИ изначально представлял собой область науки, занимающейся компьютерным моделированием различных способностей интеллекта, идет ли речь об интеллекте человеческом, животном, растительном, социальном или филогенетическом. В основе этой научной дисциплины лежит предположение о том, что все когнитивные функции, как то обучение, мышление, расчет, восприятие, память, даже научное открытие или художественное творчество, могут быть описаны с точностью, дающей возможность запрограммировать компьютер на их воспроизведение. На протяжении более чем шестидесяти лет существования ИИ не появилось ничего, что позволило бы неоспоримо доказать либо опровергнуть гипотезу, которая продолжает оставаться открытой и побуждает ученых к новым изобретениям.

Однако популярность термина «искусственный интеллект» во многом объясняется его ошибочным толкованием – в частности, когда им обозначают некую искусственную сущность, наделенную разумом, которая якобы в состоянии конкурировать с людьми. Эта мысль из области древних легенд и преданий, звучащая как миф о Големе, с недавних пор реанимируется такими нашими современниками, как британский физик Стивен Хокинг (1942-2018 гг.), американский предприниматель Илон Маск и американский инженер Рэй Курцвейл, а также сторонниками создания так называемого сильного или общего ИИ. Не будем, впрочем, говорить о данном понимании этого термина, ибо оно скорее представляет собой появившийся под влиянием научной фантастики продукт богатого воображения, а не осязаемую научную реальность, подтвержденную опытами и эмпирическими наблюдениями.

В 1930-х годах британский и австрийский математики Алан Тьюринг и Курт Гёдель, а также другие математики пришли к выводу, что не существует универсального алгоритма для решения любых задач в некоторых важных математических областях. Существуют задачи, которые не решаются путём составления алгоритма, но доступны к решению человеком, так что был сделан вывод, что компьютеры по своей природе не могут делать то, что делают люди [1] .

Конечная цель практически всех исследований в области искусственного интеллекта — получить ИИ уровня, сопоставимого с человеческим интеллектом. В методах достижения этой цели единства у исследователей нет: кто-то считает, что это достижимо в обозримом будущем с применением существующих технологий и подходов путём увеличения вычислительной и запоминающей мощности несущих ИИ-устройств, а кто-то — что сроки загадывать невозможно, так как существующие подходы к созданию искусственного интеллекта требуют переработки или даже полной замены другими [1] .

Поначалу, под влиянием первых успехов, исследователи позволяли себе несколько опрометчивые заявления, которые впоследствии неоднократно ставились им в упрек. Так, например, в 1958 году американец Герберт Саймон, позже ставший лауреатом Нобелевской премии по экономике, заявил, что если бы машины допускались к международным соревнованиям, то в ближайшие десять лет они стали бы чемпионами мира по шахматам.

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

ЧИТАТЬ ТАКЖЕ:  Чат gpt нейросеть как пользоваться в россии

Описание

Методы машинного обучения позволяют одним автоматам распознавать устную речь и записывать ее подобно секретарям-машинисткам прошлых лет, а другим – точно идентифицировать лица или отпечатки пальцев среди десятков миллионов других и обрабатывать тексты, написанные на естественных языках. Благодаря этим же методам самостоятельно движутся автомобили, компьютеры лучше врачей-дерматологов диагностируют меланомы по фотографиям родинок, сделанных с помощью сотовых телефонов, роботы воюют вместо людей; а конвейеры на заводах все больше автоматизируются.

Такие интеллектуальные системы стали применяться для выполнения самых различных задач (идентификация отпечатков пальцев, распознавание речи и т. д.), а комбинации различных методов из области ИИ, информатики, искусственной жизни и других дисциплин использовались для создания гибридных систем.

ИИ подразумевает не только рациональный анализ и воспроизведение при помощи компьютеров большинства аспектов интеллекта – может быть, лишь за исключением юмора. Машины значительно превышают наши когнитивные способности в большинстве областей, что заставляет нас опасаться некоторых этических рисков. Это риски трех видов: дефицит работы, которая вместо людей будет выполняться машинами; последствия для независимости человека и, в частности, для его свободы и безопасности; опасения, что более «умные» машины будут доминировать над людьми и станут причиной гибели человечества.

Многие результаты, достигнутые с использованием технологий ИИ, превосходят человека: в 1997 году компьютер одержал победу над действующим в то время чемпионом мира по шахматам, а недавно, в 2016 году, другие компьютеры обыграли лучших в мире игроков в го и покер. Компьютеры доказывают или помогают доказывать математические теоремы; автоматически, на основе методов машинного обучения и с помощью огромных массивов данных, объем которых исчисляется в терабайтах (10 в 12-й степени) и даже в петабайтах (10 в 15-й степени), создаются знания.

Прогресс замедлился в середине 1960-х годов. В 1965 году десятилетний мальчик одержал в шахматном матче победу над компьютером; в 1966 году в докладе, подготовленном по заказу Сената Соединенных Штатов Америки, говорилось о внутренних ограничениях, присущих машинному переводу. Около десяти лет пресса отзывалась об ИИ неодобрительно.

В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь