Искусственный интеллект как это

0
6

Искусственный интеллект

ИИ: истории успеха

Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.

Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.

Если Вы впервые задействуете искусственный интеллект для создания приложений, рекомендуется начинать с малого. Создав относительно простой проект наподобие крестиков-ноликов, Вы освоите основы искусственного интеллекта. Учеба на практике является отличным способом развития любых навыков, и искусственный интеллект здесь не исключение. Успешно выполнив несколько небольших проектов, Вы поймете, что возможности искусственного интеллекта поистине безграничны.

Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.

Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).

ИИ становится неотъемлемой частью бизнеса. Рано или поздно все компании вынуждены будут использовать технологии ИИ, чтобы создать собственную экосистему и сохранить конкурентоспособность. Те, кто пренебрегает прогрессом, в следующие 10 лет рискуют остаться за бортом.

Примечания

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.

Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.

ЧИТАТЬ ТАКЖЕ:  Как работает нейросеть

По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.

Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.

ИИ является стратегической необходимостью для любой компании, которая хочет повысить производительность, открыть новые возможности для получения прибыли и укрепить лояльность заказчиков. Эта технология уже помогла многим компаниям добиться конкурентного преимущества. Благодаря ИИ можно делать больше за меньшие сроки, обеспечивать эффективное персонализированное обслуживание и прогнозировать результаты, а значит — получать большую прибыль.

Обучение и развитие моделей ИИ

науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.

Большинство компаний сделали изучение данных своим приоритетом и вкладывают в него значительные средства. Опрос McKinsey 2021 года по ИИ показал, что количество компаний, сообщивших о внедрении ИИ по крайней мере в одной функции, увеличилось до 56 % по сравнению с 50 % годом ранее. Кроме того, 27% респондентов сообщили, что по крайней мере 5% доходов могут быть связаны с искусственным интеллектом, по сравнению с 22% годом ранее.

ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям

Одна из наиболее осуществимых систем применения ИИ — эвристика, то есть сортировка информации по категориям, используя имеющиеся данные. Пример такой деятельности — анализ контрагентов при банковских операциях [7] . Ещё одна сфера, в которой искусственный интеллект необходим — самоорганизующиеся системы, то есть компьютерные системы, способные изменять себя согласно заданным параметрам, условиям окружающей среды или необходимым к выполнению задачам [9] .

Чтобы повысить точность этих моделей, инженер будет передавать данные в модели и настраивать параметры до тех пор, пока они не достигнут заданного порога. Эти потребности в обучении, измеряемые сложностью модели, растут в геометрической прогрессии с каждым годом.

Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь