Искусственный интеллект что нужно для поступления

0
17

Искусственный интеллект: как и где изучать — отвечают эксперты

Как изучают искусственный интеллект за рубежом?

Если же вы хотите «глубоко погрузиться» в тему, ряд компаний в Москве предлагает недельные интенсивы с практическими занятиями, и даже предлагают оборудование для экспериментов (например, newprolab.com), правда, цена таких курсов от нескольких десятков тысяч рублей.

Неподдельное любопытство, интерес ко всему на свете и постоянное задавание вопросов помогут вам выявить и понять абстрактные проблемы. Помимо этого, нужно уметь интерпретировать проблемы и находить новые подходы для их решения в отрасли искусственного интеллекта.

Изучать нужно Python – по всем опросам это самый популярный сейчас язык для работы в области Data Science и самый доступный для изучения. Начать обучение несложно, сегодня в сети есть огромное количество библиотек, учебных курсов и материалов. Выбирайте тот формат, который соответствует вашей занятости и возможности учиться. Вам также потребуется освоить и другие науки: линейную алгебру, теорию вероятности и статистику. Что касается работы, то специалисты по ИИ востребованы в компаниях, у которых есть данные: это крупные компании с высокой степенью автоматизации процессов.

Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.
Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

Совсем другой подход к изучению ИИ — он же «синяя таблетка» — начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

ИИ сейчас активно развивается, и предсказывать на десять лет вперед сложно. На ближайшие два-три года будут доминировать подходы на базе нейросетей и вычислений на основе GPU. Лидером в этой области является Python с интерактивной средой Jupyter и библиотеками numpy, scipy, tensorflow.

Что нужно для изучения искусственного интеллекта?

Тема ИИ и машинного обучения стала значительно более демократичной, чем несколько лет назад.
В интернете можно найти платные и бесплатные курсы на эту тему, инструменты становятся более простыми и менее требовательными как к знаниям, так и к аппаратному обеспечению.

ЧИТАТЬ ТАКЖЕ:  Что является основой искусственного интеллекта

Архитекторы программного обеспечения разрабатывают и поддерживают системы, инструменты, платформы и технические стандарты. ИИ-архитекторы делают это для технологий искусственного интеллекта. Они создают и поддерживают архитектуру ИИ, планируют и внедряют решения, создают набор инструментов и обеспечивают бесперебойный поток данных.

Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.

Прикладные задачи, решаемые методами ИИ, можно найти в самых разнообразных местах. Банки, финансовый сектор, консалтинг, ритейл, e-commerce, поисковые системы, почтовые сервисы, игровая индустрия, индустрия систем безопасности и, конечно, Avito – все нуждаются в специалистах различной квалификации.

И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность — «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.

Следующий шаг — изучение проблематики вопроса. Существует огромное количество литературы, как учебной, так и специальной. Большинство публикаций по теме искусственного интеллекта и нейросетей написаны на английском языке, однако русскоязычные материалы тоже публикуются. Полезную литературу можно найти, например, в общедоступной цифровой библиотеке arxiv.org.

Искусственный интеллект – это та сфера в мире IT, которая активно развивается и имеет как огромную популярность, так и много вопросов. Многие программисты хотят заниматься разработкой ИИ, но не знают с чего начать, поэтому мы решили поделиться с вами вопросом, который пришел от нашего подписчика:

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь